Documentation

Mathlib.Topology.NhdsSet

Neighborhoods of a set #

In this file we define the filter 𝓝ˢ s or nhdsSet s consisting of all neighborhoods of a set s.

Main Properties #

There are a couple different notions equivalent to s ∈ 𝓝ˢ t:

Furthermore, we have the following results:

def nhdsSet {α : Type u_1} [TopologicalSpace α] (s : Set α) :

The filter of neighborhoods of a set in a topological space.

Equations
Instances For

    The filter of neighborhoods of a set in a topological space.

    Equations
    Instances For
      theorem nhdsSet_diagonal (α : Type u_3) [TopologicalSpace (α × α)] :
      nhdsSet (Set.diagonal α) = ⨆ (x : α), nhds (x, x)
      theorem mem_nhdsSet_iff_forall {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} :
      s nhdsSet t ∀ (x : α), x ts nhds x
      theorem nhdsSet_le {α : Type u_1} [TopologicalSpace α] {f : Filter α} {s : Set α} :
      nhdsSet s f ∀ (a : α), a snhds a f
      theorem bUnion_mem_nhdsSet {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : αSet α} (h : ∀ (x : α), x st x nhds x) :
      ⋃ (x : α) (_ : x s), t x nhdsSet s
      theorem subset_interior_iff_mem_nhdsSet {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} :
      theorem mem_nhdsSet_iff_exists {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} :
      s nhdsSet t U, IsOpen U t U U s
      theorem hasBasis_nhdsSet {α : Type u_1} [TopologicalSpace α] (s : Set α) :
      Filter.HasBasis (nhdsSet s) (fun U => IsOpen U s U) fun U => U
      theorem IsOpen.mem_nhdsSet {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} (hU : IsOpen s) :
      s nhdsSet t t s
      theorem subset_of_mem_nhdsSet {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} (h : t nhdsSet s) :
      s t
      theorem Filter.Eventually.self_of_nhdsSet {α : Type u_1} [TopologicalSpace α] {s : Set α} {p : αProp} (h : ∀ᶠ (x : α) in nhdsSet s, p x) (x : α) :
      x sp x
      theorem Filter.EventuallyEq.self_of_nhdsSet {α : Type u_1} {β : Type u_2} [TopologicalSpace α] {s : Set α} {f : αβ} {g : αβ} (h : f =ᶠ[nhdsSet s] g) :
      Set.EqOn f g s
      theorem IsOpen.nhdsSet_eq {α : Type u_1} [TopologicalSpace α] {s : Set α} :

      Alias of the reverse direction of nhdsSet_eq_principal_iff.

      @[simp]
      @[simp]
      theorem nhdsSet_singleton {α : Type u_1} [TopologicalSpace α] {x : α} :
      nhdsSet {x} = nhds x
      theorem mem_nhdsSet_interior {α : Type u_1} [TopologicalSpace α] {s : Set α} :
      @[simp]
      theorem mem_nhdsSet_empty {α : Type u_1} [TopologicalSpace α] {s : Set α} :
      @[simp]
      theorem nhdsSet_univ {α : Type u_1} [TopologicalSpace α] :
      nhdsSet Set.univ =
      theorem nhdsSet_mono {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} (h : s t) :
      theorem monotone_nhdsSet {α : Type u_1} [TopologicalSpace α] :
      Monotone nhdsSet
      theorem nhds_le_nhdsSet {α : Type u_1} [TopologicalSpace α] {s : Set α} {x : α} (h : x s) :
      @[simp]
      theorem nhdsSet_union {α : Type u_1} [TopologicalSpace α] (s : Set α) (t : Set α) :
      theorem union_mem_nhdsSet {α : Type u_1} [TopologicalSpace α] {s₁ : Set α} {s₂ : Set α} {t₁ : Set α} {t₂ : Set α} (h₁ : s₁ nhdsSet t₁) (h₂ : s₂ nhdsSet t₂) :
      s₁ s₂ nhdsSet (t₁ t₂)
      @[simp]
      theorem nhdsSet_insert {α : Type u_1} [TopologicalSpace α] (x : α) (s : Set α) :
      theorem Continuous.tendsto_nhdsSet {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] {s : Set α} {f : αβ} {t : Set β} (hf : Continuous f) (hst : Set.MapsTo f s t) :

      Preimage of a set neighborhood of t under a continuous map f is a set neighborhood of s provided that f maps s to t.