Documentation

Mathlib.Topology.Algebra.InfiniteSum.Module

Infinite sums in topological vector spaces #

theorem HasSum.smul_const {ι : Type u_1} {R : Type u_2} {M : Type u_4} [Semiring R] [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousSMul R M] {f : ιR} {r : R} (hf : HasSum f r) (a : M) :
HasSum (fun z => f z a) (r a)
theorem Summable.smul_const {ι : Type u_1} {R : Type u_2} {M : Type u_4} [Semiring R] [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousSMul R M] {f : ιR} (hf : Summable f) (a : M) :
Summable fun z => f z a
theorem tsum_smul_const {ι : Type u_1} {R : Type u_2} {M : Type u_4} [Semiring R] [TopologicalSpace R] [TopologicalSpace M] [AddCommMonoid M] [Module R M] [ContinuousSMul R M] {f : ιR} [T2Space M] (hf : Summable f) (a : M) :
∑' (z : ι), f z a = (∑' (z : ι), f z) a
theorem ContinuousLinearMap.hasSum {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {f : ιM} (φ : M →SL[σ] M₂) {x : M} (hf : HasSum f x) :
HasSum (fun b => φ (f b)) (φ x)

Applying a continuous linear map commutes with taking an (infinite) sum.

theorem HasSum.mapL {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {f : ιM} (φ : M →SL[σ] M₂) {x : M} (hf : HasSum f x) :
HasSum (fun b => φ (f b)) (φ x)

Alias of ContinuousLinearMap.hasSum.


Applying a continuous linear map commutes with taking an (infinite) sum.

theorem ContinuousLinearMap.summable {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {f : ιM} (φ : M →SL[σ] M₂) (hf : Summable f) :
Summable fun b => φ (f b)
theorem Summable.mapL {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {f : ιM} (φ : M →SL[σ] M₂) (hf : Summable f) :
Summable fun b => φ (f b)

Alias of ContinuousLinearMap.summable.

theorem ContinuousLinearMap.map_tsum {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} [T2Space M₂] {f : ιM} (φ : M →SL[σ] M₂) (hf : Summable f) :
φ (∑' (z : ι), f z) = ∑' (z : ι), φ (f z)
theorem ContinuousLinearEquiv.hasSum {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {σ' : R₂ →+* R} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ] {f : ιM} (e : M ≃SL[σ] M₂) {y : M₂} :
HasSum (fun b => e (f b)) y HasSum f (↑(ContinuousLinearEquiv.symm e) y)

Applying a continuous linear map commutes with taking an (infinite) sum.

theorem ContinuousLinearEquiv.hasSum' {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {σ' : R₂ →+* R} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ] {f : ιM} (e : M ≃SL[σ] M₂) {x : M} :
HasSum (fun b => e (f b)) (e x) HasSum f x

Applying a continuous linear map commutes with taking an (infinite) sum.

theorem ContinuousLinearEquiv.summable {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {σ' : R₂ →+* R} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ] {f : ιM} (e : M ≃SL[σ] M₂) :
(Summable fun b => e (f b)) Summable f
theorem ContinuousLinearEquiv.tsum_eq_iff {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {σ' : R₂ →+* R} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ] [T2Space M] [T2Space M₂] {f : ιM} (e : M ≃SL[σ] M₂) {y : M₂} :
∑' (z : ι), e (f z) = y ∑' (z : ι), f z = ↑(ContinuousLinearEquiv.symm e) y
theorem ContinuousLinearEquiv.map_tsum {ι : Type u_1} {R : Type u_2} {R₂ : Type u_3} {M : Type u_4} {M₂ : Type u_5} [Semiring R] [Semiring R₂] [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R₂ M₂] [TopologicalSpace M] [TopologicalSpace M₂] {σ : R →+* R₂} {σ' : R₂ →+* R} [RingHomInvPair σ σ'] [RingHomInvPair σ' σ] [T2Space M] [T2Space M₂] {f : ιM} (e : M ≃SL[σ] M₂) :
e (∑' (z : ι), f z) = ∑' (z : ι), e (f z)