Documentation

Mathlib.Topology.Algebra.MulAction

Continuous monoid action #

In this file we define class ContinuousSMul. We say ContinuousSMul M X if M acts on X and the map (c, x) ↦ c • x is continuous on M × X. We reuse this class for topological (semi)modules, vector spaces and algebras.

Main definitions #

-- Porting note: These have all moved

Main results #

Besides homeomorphisms mentioned above, in this file we provide lemmas like Continuous.smul or Filter.Tendsto.smul that provide dot-syntax access to ContinuousSMul.

class ContinuousSMul (M : Type u_1) (X : Type u_2) [SMul M X] [TopologicalSpace M] [TopologicalSpace X] :
  • continuous_smul : Continuous fun p => p.fst p.snd

    The scalar multiplication (•) is continuous.

Class ContinuousSMul M X says that the scalar multiplication (•) : M → X → X is continuous in both arguments. We use the same class for all kinds of multiplicative actions, including (semi)modules and algebras.

Instances
    class ContinuousVAdd (M : Type u_1) (X : Type u_2) [VAdd M X] [TopologicalSpace M] [TopologicalSpace X] :
    • continuous_vadd : Continuous fun p => p.fst +ᵥ p.snd

      The additive action (+ᵥ) is continuous.

    Class ContinuousVAdd M X says that the additive action (+ᵥ) : M → X → X is continuous in both arguments. We use the same class for all kinds of additive actions, including (semi)modules and algebras.

    Instances
      theorem Filter.Tendsto.vadd {M : Type u_1} {X : Type u_2} {α : Type u_4} [TopologicalSpace M] [TopologicalSpace X] [VAdd M X] [ContinuousVAdd M X] {f : αM} {g : αX} {l : Filter α} {c : M} {a : X} (hf : Filter.Tendsto f l (nhds c)) (hg : Filter.Tendsto g l (nhds a)) :
      Filter.Tendsto (fun x => f x +ᵥ g x) l (nhds (c +ᵥ a))
      theorem Filter.Tendsto.smul {M : Type u_1} {X : Type u_2} {α : Type u_4} [TopologicalSpace M] [TopologicalSpace X] [SMul M X] [ContinuousSMul M X] {f : αM} {g : αX} {l : Filter α} {c : M} {a : X} (hf : Filter.Tendsto f l (nhds c)) (hg : Filter.Tendsto g l (nhds a)) :
      Filter.Tendsto (fun x => f x g x) l (nhds (c a))
      theorem Filter.Tendsto.vadd_const {M : Type u_1} {X : Type u_2} {α : Type u_4} [TopologicalSpace M] [TopologicalSpace X] [VAdd M X] [ContinuousVAdd M X] {f : αM} {l : Filter α} {c : M} (hf : Filter.Tendsto f l (nhds c)) (a : X) :
      Filter.Tendsto (fun x => f x +ᵥ a) l (nhds (c +ᵥ a))
      theorem Filter.Tendsto.smul_const {M : Type u_1} {X : Type u_2} {α : Type u_4} [TopologicalSpace M] [TopologicalSpace X] [SMul M X] [ContinuousSMul M X] {f : αM} {l : Filter α} {c : M} (hf : Filter.Tendsto f l (nhds c)) (a : X) :
      Filter.Tendsto (fun x => f x a) l (nhds (c a))
      theorem ContinuousWithinAt.vadd {M : Type u_1} {X : Type u_2} {Y : Type u_3} [TopologicalSpace M] [TopologicalSpace X] [TopologicalSpace Y] [VAdd M X] [ContinuousVAdd M X] {f : YM} {g : YX} {b : Y} {s : Set Y} (hf : ContinuousWithinAt f s b) (hg : ContinuousWithinAt g s b) :
      ContinuousWithinAt (fun x => f x +ᵥ g x) s b
      theorem ContinuousWithinAt.smul {M : Type u_1} {X : Type u_2} {Y : Type u_3} [TopologicalSpace M] [TopologicalSpace X] [TopologicalSpace Y] [SMul M X] [ContinuousSMul M X] {f : YM} {g : YX} {b : Y} {s : Set Y} (hf : ContinuousWithinAt f s b) (hg : ContinuousWithinAt g s b) :
      ContinuousWithinAt (fun x => f x g x) s b
      theorem ContinuousAt.vadd {M : Type u_1} {X : Type u_2} {Y : Type u_3} [TopologicalSpace M] [TopologicalSpace X] [TopologicalSpace Y] [VAdd M X] [ContinuousVAdd M X] {f : YM} {g : YX} {b : Y} (hf : ContinuousAt f b) (hg : ContinuousAt g b) :
      ContinuousAt (fun x => f x +ᵥ g x) b
      theorem ContinuousAt.smul {M : Type u_1} {X : Type u_2} {Y : Type u_3} [TopologicalSpace M] [TopologicalSpace X] [TopologicalSpace Y] [SMul M X] [ContinuousSMul M X] {f : YM} {g : YX} {b : Y} (hf : ContinuousAt f b) (hg : ContinuousAt g b) :
      ContinuousAt (fun x => f x g x) b
      theorem ContinuousOn.vadd {M : Type u_1} {X : Type u_2} {Y : Type u_3} [TopologicalSpace M] [TopologicalSpace X] [TopologicalSpace Y] [VAdd M X] [ContinuousVAdd M X] {f : YM} {g : YX} {s : Set Y} (hf : ContinuousOn f s) (hg : ContinuousOn g s) :
      ContinuousOn (fun x => f x +ᵥ g x) s
      theorem ContinuousOn.smul {M : Type u_1} {X : Type u_2} {Y : Type u_3} [TopologicalSpace M] [TopologicalSpace X] [TopologicalSpace Y] [SMul M X] [ContinuousSMul M X] {f : YM} {g : YX} {s : Set Y} (hf : ContinuousOn f s) (hg : ContinuousOn g s) :
      ContinuousOn (fun x => f x g x) s
      theorem Continuous.vadd {M : Type u_1} {X : Type u_2} {Y : Type u_3} [TopologicalSpace M] [TopologicalSpace X] [TopologicalSpace Y] [VAdd M X] [ContinuousVAdd M X] {f : YM} {g : YX} (hf : Continuous f) (hg : Continuous g) :
      Continuous fun x => f x +ᵥ g x
      theorem Continuous.smul {M : Type u_1} {X : Type u_2} {Y : Type u_3} [TopologicalSpace M] [TopologicalSpace X] [TopologicalSpace Y] [SMul M X] [ContinuousSMul M X] {f : YM} {g : YX} (hf : Continuous f) (hg : Continuous g) :
      Continuous fun x => f x g x

      If an additive action is central, then its right action is continuous when its left action is.

      Equations

      If a scalar action is central, then its right action is continuous when its left action is.

      Equations
      theorem instContinuousVAddForAllInstVAddTopologicalSpace.proof_1 {M : Type u_1} [TopologicalSpace M] {ι : Type u_2} {γ : ιType u_3} [(i : ι) → TopologicalSpace (γ i)] [(i : ι) → VAdd M (γ i)] [∀ (i : ι), ContinuousVAdd M (γ i)] :
      ContinuousVAdd M ((i : ι) → γ i)
      instance instContinuousVAddForAllInstVAddTopologicalSpace {M : Type u_1} [TopologicalSpace M] {ι : Type u_5} {γ : ιType u_6} [(i : ι) → TopologicalSpace (γ i)] [(i : ι) → VAdd M (γ i)] [∀ (i : ι), ContinuousVAdd M (γ i)] :
      ContinuousVAdd M ((i : ι) → γ i)
      Equations
      instance instContinuousSMulForAllInstSMulTopologicalSpace {M : Type u_1} [TopologicalSpace M] {ι : Type u_5} {γ : ιType u_6} [(i : ι) → TopologicalSpace (γ i)] [(i : ι) → SMul M (γ i)] [∀ (i : ι), ContinuousSMul M (γ i)] :
      ContinuousSMul M ((i : ι) → γ i)
      Equations
      theorem continuousVAdd_sInf {M : Type u_2} {X : Type u_3} [TopologicalSpace M] [VAdd M X] {ts : Set (TopologicalSpace X)} (h : ∀ (t : TopologicalSpace X), t tsContinuousVAdd M X) :
      theorem continuousSMul_sInf {M : Type u_2} {X : Type u_3} [TopologicalSpace M] [SMul M X] {ts : Set (TopologicalSpace X)} (h : ∀ (t : TopologicalSpace X), t tsContinuousSMul M X) :
      theorem continuousVAdd_iInf {ι : Sort u_1} {M : Type u_2} {X : Type u_3} [TopologicalSpace M] [VAdd M X] {ts' : ιTopologicalSpace X} (h : ∀ (i : ι), ContinuousVAdd M X) :
      theorem continuousSMul_iInf {ι : Sort u_1} {M : Type u_2} {X : Type u_3} [TopologicalSpace M] [SMul M X] {ts' : ιTopologicalSpace X} (h : ∀ (i : ι), ContinuousSMul M X) :
      theorem continuousVAdd_inf {M : Type u_2} {X : Type u_3} [TopologicalSpace M] [VAdd M X] {t₁ : TopologicalSpace X} {t₂ : TopologicalSpace X} [ContinuousVAdd M X] [ContinuousVAdd M X] :
      theorem continuousSMul_inf {M : Type u_2} {X : Type u_3} [TopologicalSpace M] [SMul M X] {t₁ : TopologicalSpace X} {t₂ : TopologicalSpace X} [ContinuousSMul M X] [ContinuousSMul M X] :

      An AddTorsor for a connected space is a connected space. This is not an instance because it loops for a group as a torsor over itself.