Documentation

Mathlib.RingTheory.RingHomProperties

Properties of ring homomorphisms #

We provide the basic framework for talking about properties of ring homomorphisms. The following meta-properties of predicates on ring homomorphisms are defined

def RingHom.RespectsIso (P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop) :

A property RespectsIso if it still holds when composed with an isomorphism

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem RingHom.RespectsIso.cancel_left_isIso {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} (hP : RingHom.RespectsIso P) {R : CommRingCat} {S : CommRingCat} {T : CommRingCat} (f : R S) (g : S T) [CategoryTheory.IsIso f] :
    theorem RingHom.RespectsIso.cancel_right_isIso {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} (hP : RingHom.RespectsIso P) {R : CommRingCat} {S : CommRingCat} {T : CommRingCat} (f : R S) (g : S T) [CategoryTheory.IsIso g] :
    theorem RingHom.RespectsIso.is_localization_away_iff {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} (hP : RingHom.RespectsIso P) {R : Type u} {S : Type u} (R' : Type u) (S' : Type u) [CommRing R] [CommRing S] [CommRing R'] [CommRing S'] [Algebra R R'] [Algebra S S'] (f : R →+* S) (r : R) [IsLocalization.Away r R'] [IsLocalization.Away (f r) S'] :
    P (Localization.Away r) (Localization.Away (f r)) Localization.instCommRingLocalizationToCommMonoid Localization.instCommRingLocalizationToCommMonoid (Localization.awayMap f r) P R' S' inst✝ inst✝¹ (IsLocalization.Away.map R' S' f r)
    def RingHom.StableUnderComposition (P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop) :

    A property is StableUnderComposition if the composition of two such morphisms still falls in the class.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem RingHom.StableUnderComposition.respectsIso {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} (hP : RingHom.StableUnderComposition P) (hP' : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (e : R ≃+* S) → P R S inst inst_1 (RingEquiv.toRingHom e)) :
      def RingHom.StableUnderBaseChange (P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop) :

      A morphism property P is StableUnderBaseChange if P(S →+* A) implies P(B →+* A ⊗[S] B).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem RingHom.StableUnderBaseChange.mk (P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop) (h₁ : RingHom.RespectsIso P) (h₂ : R S T : Type u⦄ → [inst : CommRing R] → [inst_1 : CommRing S] → [inst_2 : CommRing T] → [inst_3 : Algebra R S] → [inst_4 : Algebra R T] → P R T inst inst_2 (algebraMap R T)P S (TensorProduct R S T) inst_1 Algebra.TensorProduct.instCommRing Algebra.TensorProduct.includeLeftRingHom) :
        theorem RingHom.StableUnderBaseChange.pushout_inl (P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop) (hP : RingHom.StableUnderBaseChange P) (hP' : RingHom.RespectsIso P) {R : CommRingCat} {S : CommRingCat} {T : CommRingCat} (f : R S) (g : R T) (H : P (R) (T) (CommRingCat.instCommRingα R) (CommRingCat.instCommRingα T) g) :