Discriminant of cyclotomic fields #
We compute the discriminant of a p ^ n-th cyclotomic extension.
Main results #
IsCyclotomicExtension.discr_odd_prime: ifpis an odd prime such thatIsCyclotomicExtension {p} K LandIrreducible (cyclotomic p K), thendiscr K (hζ.powerBasis K).basis = (-1) ^ ((p - 1) / 2) * p ^ (p - 2)for anyhζ : IsPrimitiveRoot ζ p.
The discriminant of the power basis given by a primitive root of unity ζ is the same as the
discriminant of the power basis given by ζ - 1.
If p is a prime and IsCyclotomicExtension {p ^ (k + 1)} K L, then the discriminant of
hζ.powerBasis K is (-1) ^ ((p ^ (k + 1).totient) / 2) * p ^ (p ^ k * ((p - 1) * (k + 1) - 1))
if Irreducible (cyclotomic (p ^ (k + 1)) K)), and p ^ (k + 1) ≠ 2.
If p is a prime and IsCyclotomicExtension {p ^ (k + 1)} K L, then the discriminant of
hζ.powerBasis K is (-1) ^ (p ^ k * (p - 1) / 2) * p ^ (p ^ k * ((p - 1) * (k + 1) - 1))
if Irreducible (cyclotomic (p ^ (k + 1)) K)), and p ^ (k + 1) ≠ 2.
If p is a prime and IsCyclotomicExtension {p ^ k} K L, then the discriminant of
hζ.powerBasis K is (-1) ^ ((p ^ k).totient / 2) * p ^ (p ^ (k - 1) * ((p - 1) * k - 1))
if Irreducible (cyclotomic (p ^ k) K)). Beware that in the cases p ^ k = 1 and p ^ k = 2
the formula uses 1 / 2 = 0 and 0 - 1 = 0. It is useful only to have a uniform result.
See also IsCyclotomicExtension.discr_prime_pow_eq_unit_mul_pow.
If p is a prime and IsCyclotomicExtension {p ^ k} K L, then there are u : ℤˣ and
n : ℕ such that the discriminant of hζ.powerBasis K is u * p ^ n. Often this is enough and
less cumbersome to use than IsCyclotomicExtension.discr_prime_pow.
If p is an odd prime and IsCyclotomicExtension {p} K L, then
discr K (hζ.powerBasis K).basis = (-1) ^ ((p - 1) / 2) * p ^ (p - 2) if
Irreducible (cyclotomic p K).