Documentation

Mathlib.MeasureTheory.Measure.Haar.NormedSpace

Basic properties of Haar measures on real vector spaces #

theorem MeasureTheory.Measure.integral_comp_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] [CompleteSpace F] (f : E โ†’ F) (R : โ„) :
โˆซ (x : E), f (R โ€ข x) โˆ‚ฮผ = |(R ^ FiniteDimensional.finrank โ„ E)โปยน| โ€ข โˆซ (x : E), f x โˆ‚ฮผ

The integral of f (R โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_smul_of_nonneg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] [CompleteSpace F] (f : E โ†’ F) (R : โ„) {hR : 0 โ‰ค R} :
โˆซ (x : E), f (R โ€ข x) โˆ‚ฮผ = (R ^ FiniteDimensional.finrank โ„ E)โปยน โ€ข โˆซ (x : E), f x โˆ‚ฮผ

The integral of f (R โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_inv_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„ E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional โ„ E] (ฮผ : MeasureTheory.Measure E) [MeasureTheory.Measure.IsAddHaarMeasure ฮผ] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] [CompleteSpace F] (f : E โ†’ F) (R : โ„) :
โˆซ (x : E), f (Rโปยน โ€ข x) โˆ‚ฮผ = |R ^ FiniteDimensional.finrank โ„ E| โ€ข โˆซ (x : E), f x โˆ‚ฮผ

The integral of f (Rโปยน โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

The integral of f (Rโปยน โ€ข x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_mul_left {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] [CompleteSpace F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (a * x) = |aโปยน| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Measure.integral_comp_inv_mul_left {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] [CompleteSpace F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (aโปยน * x) = |a| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Measure.integral_comp_mul_right {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] [CompleteSpace F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (x * a) = |aโปยน| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Measure.integral_comp_inv_mul_right {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] [CompleteSpace F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (x * aโปยน) = |a| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Measure.integral_comp_div {F : Type u_2} [NormedAddCommGroup F] [NormedSpace โ„ F] [CompleteSpace F] (g : โ„ โ†’ F) (a : โ„) :
โˆซ (x : โ„), g (x / a) = |a| โ€ข โˆซ (y : โ„), g y
theorem MeasureTheory.Integrable.comp_div {F : Type u_1} [NormedAddCommGroup F] {g : โ„ โ†’ F} (hg : MeasureTheory.Integrable g) {R : โ„} (hR : R โ‰  0) :
MeasureTheory.Integrable fun x => g (x / R)