Documentation

Mathlib.MeasureTheory.Measure.Content

Contents #

In this file we work with contents. A content λ is a function from a certain class of subsets (such as the compact subsets) to ℝ≥0 that is

We show that:

We define bundled contents as Content. In this file we only work on contents on compact sets, and inner contents on open sets, and both contents and inner contents map into the extended nonnegative reals. However, in other applications other choices can be made, and it is not a priori clear what the best interface should be.

Main definitions #

For μ : Content G, we define

We prove that, on a locally compact space, the measure μ.measure is regular.

References #

A content is an additive function on compact sets taking values in ℝ≥0. It is a device from which one can define a measure.

Instances For
    Equations
    • One or more equations did not get rendered due to their size.

    Although the toFun field of a content takes values in ℝ≥0, we register a coercion to functions taking values in ℝ≥0∞ as most constructions below rely on taking iSups and iInfs, which is more convenient in a complete lattice, and aim at constructing a measure.

    Equations
    theorem MeasureTheory.Content.mono {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) (K₁ : TopologicalSpace.Compacts G) (K₂ : TopologicalSpace.Compacts G) (h : K₁ K₂) :
    (fun s => ↑(MeasureTheory.Content.toFun μ s)) K₁ (fun s => ↑(MeasureTheory.Content.toFun μ s)) K₂
    theorem MeasureTheory.Content.sup_disjoint {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) (K₁ : TopologicalSpace.Compacts G) (K₂ : TopologicalSpace.Compacts G) (h : Disjoint K₁ K₂) :
    (fun s => ↑(MeasureTheory.Content.toFun μ s)) (K₁ K₂) = (fun s => ↑(MeasureTheory.Content.toFun μ s)) K₁ + (fun s => ↑(MeasureTheory.Content.toFun μ s)) K₂
    theorem MeasureTheory.Content.sup_le {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) (K₁ : TopologicalSpace.Compacts G) (K₂ : TopologicalSpace.Compacts G) :
    (fun s => ↑(MeasureTheory.Content.toFun μ s)) (K₁ K₂) (fun s => ↑(MeasureTheory.Content.toFun μ s)) K₁ + (fun s => ↑(MeasureTheory.Content.toFun μ s)) K₂

    Constructing the inner content of a content. From a content defined on the compact sets, we obtain a function defined on all open sets, by taking the supremum of the content of all compact subsets.

    Equations
    Instances For
      theorem MeasureTheory.Content.innerContent_of_isCompact {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) {K : Set G} (h1K : IsCompact K) (h2K : IsOpen K) :
      MeasureTheory.Content.innerContent μ { carrier := K, is_open' := h2K } = (fun s => ↑(MeasureTheory.Content.toFun μ s)) { carrier := K, isCompact' := h1K }
      theorem MeasureTheory.Content.innerContent_mono {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) ⦃U : Set G ⦃V : Set G (hU : IsOpen U) (hV : IsOpen V) (h2 : U V) :
      MeasureTheory.Content.innerContent μ { carrier := U, is_open' := hU } MeasureTheory.Content.innerContent μ { carrier := V, is_open' := hV }

      This is "unbundled", because that is required for the API of inducedOuterMeasure.

      The inner content of a supremum of opens is at most the sum of the individual inner contents.

      theorem MeasureTheory.Content.innerContent_iUnion_nat {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) [T2Space G] ⦃U : Set G (hU : ∀ (i : ), IsOpen (U i)) :
      MeasureTheory.Content.innerContent μ { carrier := ⋃ (i : ), U i, is_open' := (_ : IsOpen (⋃ (i : ), U i)) } ∑' (i : ), MeasureTheory.Content.innerContent μ { carrier := U i, is_open' := hU i }

      The inner content of a union of sets is at most the sum of the individual inner contents. This is the "unbundled" version of innerContent_iSup_nat. It is required for the API of inducedOuterMeasure.

      theorem MeasureTheory.Content.innerContent_mono' {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) ⦃U : Set G ⦃V : Set G (hU : IsOpen U) (hV : IsOpen V) (h2 : U V) :
      MeasureTheory.Content.innerContent μ { carrier := U, is_open' := hU } MeasureTheory.Content.innerContent μ { carrier := V, is_open' := hV }

      Extending a content on compact sets to an outer measure on all sets.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem MeasureTheory.Content.outerMeasure_eq_iInf {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) [T2Space G] (A : Set G) :
        ↑(MeasureTheory.Content.outerMeasure μ) A = ⨅ (U : Set G) (hU : IsOpen U) (_ : A U), MeasureTheory.Content.innerContent μ { carrier := U, is_open' := hU }
        theorem MeasureTheory.Content.is_mul_left_invariant_outerMeasure {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) [T2Space G] [Group G] [TopologicalGroup G] (h : ∀ (g : G) {K : TopologicalSpace.Compacts G}, (fun s => ↑(MeasureTheory.Content.toFun μ s)) (TopologicalSpace.Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = (fun s => ↑(MeasureTheory.Content.toFun μ s)) K) (g : G) (A : Set G) :
        theorem MeasureTheory.Content.outerMeasure_pos_of_is_add_left_invariant {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) [T2Space G] [AddGroup G] [TopologicalAddGroup G] (h3 : ∀ (g : G) {K : TopologicalSpace.Compacts G}, (fun s => ↑(MeasureTheory.Content.toFun μ s)) (TopologicalSpace.Compacts.map (fun b => g + b) (_ : Continuous fun b => g + b) K) = (fun s => ↑(MeasureTheory.Content.toFun μ s)) K) (K : TopologicalSpace.Compacts G) (hK : (fun s => ↑(MeasureTheory.Content.toFun μ s)) K 0) {U : Set G} (h1U : IsOpen U) (h2U : Set.Nonempty U) :
        theorem MeasureTheory.Content.outerMeasure_pos_of_is_mul_left_invariant {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) [T2Space G] [Group G] [TopologicalGroup G] (h3 : ∀ (g : G) {K : TopologicalSpace.Compacts G}, (fun s => ↑(MeasureTheory.Content.toFun μ s)) (TopologicalSpace.Compacts.map (fun b => g * b) (_ : Continuous fun b => g * b) K) = (fun s => ↑(MeasureTheory.Content.toFun μ s)) K) (K : TopologicalSpace.Compacts G) (hK : (fun s => ↑(MeasureTheory.Content.toFun μ s)) K 0) {U : Set G} (h1U : IsOpen U) (h2U : Set.Nonempty U) :

        For the outer measure coming from a content, all Borel sets are measurable.

        The measure induced by the outer measure coming from a content, on the Borel sigma-algebra.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          A content μ is called regular if for every compact set K, μ(K) = inf {μ(K') : K ⊂ int K' ⊂ K'}. See Paul Halmos (1950), Measure Theory, §54

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem MeasureTheory.Content.contentRegular_exists_compact {G : Type w} [TopologicalSpace G] (μ : MeasureTheory.Content G) (H : MeasureTheory.Content.ContentRegular μ) (K : TopologicalSpace.Compacts G) {ε : NNReal} (hε : ε 0) :
            K', K.carrier interior K'.carrier (fun s => ↑(MeasureTheory.Content.toFun μ s)) K' (fun s => ↑(MeasureTheory.Content.toFun μ s)) K + ε

            If μ is a regular content, then the measure induced by μ will agree with μ on compact sets.