ZMod n and quotient groups / rings #
This file relates ZMod n to the quotient group
ℤ / AddSubgroup.zmultiples (n : ℤ) and to the quotient ring
ℤ ⧸ Ideal.span {(n : ℤ)}.
Main definitions #
ZMod.quotientZmultiplesNatEquivZModandZMod.quotientZmultiplesEquivZMod:ZMod nis the group quotient ofℤbyn ℤ := AddSubgroup.zmultiples (n), (wheren : ℕandn : ℤrespectively)ZMod.quotient_span_nat_equiv_zmodandZMod.quotientSpanEquivZMod:ZMod nis the ring quotient ofℤbyn ℤ : Ideal.span {n}(wheren : ℕandn : ℤrespectively)ZMod.lift n fis the map fromZMod ninduced byf : ℤ →+ Athat mapsnto0.
Tags #
zmod, quotient group, quotient ring, ideal quotient
ℤ modulo multiples of n : ℕ is ZMod n.
Equations
- One or more equations did not get rendered due to their size.
Instances For
ℤ modulo multiples of a : ℤ is ZMod a.nat_abs.
Equations
- One or more equations did not get rendered due to their size.
Instances For
ℤ modulo the ideal generated by n : ℕ is ZMod n.
Equations
- One or more equations did not get rendered due to their size.
Instances For
ℤ modulo the ideal generated by a : ℤ is ZMod a.nat_abs.
Equations
- Int.quotientSpanEquivZMod a = RingEquiv.trans (RingEquiv.symm (Ideal.quotEquivOfEq (_ : Ideal.span {↑(Int.natAbs a)} = Ideal.span {a}))) (Int.quotientSpanNatEquivZMod (Int.natAbs a))
Instances For
The quotient (ℤ ∙ a) ⧸ (stabilizer b) is cyclic of order minimalPeriod ((+ᵥ) a) b.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The quotient (a ^ ℤ) ⧸ (stabilizer b) is cyclic of order minimalPeriod ((•) a) b.
Equations
- MulAction.zpowersQuotientStabilizerEquiv a b = ↑AddEquiv.toMultiplicative (AddAction.zmultiplesQuotientStabilizerEquiv (↑Additive.ofMul a) b)
Instances For
The orbit (a ^ ℤ) • b is a cycle of order minimalPeriod ((•) a) b.
Equations
- MulAction.orbitZpowersEquiv a b = (MulAction.orbitEquivQuotientStabilizer { x // x ∈ Subgroup.zpowers a } b).trans (MulAction.zpowersQuotientStabilizerEquiv a b).toEquiv
Instances For
The orbit (ℤ • a) +ᵥ b is a cycle of order minimalPeriod ((+ᵥ) a) b.
Equations
- AddAction.orbitZmultiplesEquiv a b = (AddAction.orbitEquivQuotientStabilizer { x // x ∈ AddSubgroup.zmultiples a } b).trans (AddAction.zmultiplesQuotientStabilizerEquiv a b).toEquiv
Instances For
See also add_order_eq_card_zmultiples.
See also orderOf_eq_card_zpowers.