Documentation

Mathlib.RingTheory.Ideal.QuotientOperations

More operations on modules and ideals related to quotients #

def RingHom.kerLift {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) :

The induced map from the quotient by the kernel to the codomain.

This is an isomorphism if f has a right inverse (quotientKerEquivOfRightInverse) / is surjective (quotientKerEquivOfSurjective).

Equations
Instances For
    @[simp]
    theorem RingHom.kerLift_mk {R : Type u} {S : Type v} [CommRing R] [CommRing S] (f : R →+* S) (r : R) :
    ↑(RingHom.kerLift f) (↑(Ideal.Quotient.mk (RingHom.ker f)) r) = f r

    The induced map from the quotient by the kernel is injective.

    theorem RingHom.lift_injective_of_ker_le_ideal {R : Type u} {S : Type v} [CommRing R] [CommRing S] (I : Ideal R) {f : R →+* S} (H : ∀ (a : R), a If a = 0) (hI : RingHom.ker f I) :
    def RingHom.quotientKerEquivOfRightInverse {R : Type u} {S : Type v} [CommRing R] [CommRing S] {f : R →+* S} {g : SR} (hf : Function.RightInverse g f) :

    The first isomorphism theorem for commutative rings, computable version.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem RingHom.quotientKerEquivOfRightInverse.apply {R : Type u} {S : Type v} [CommRing R] [CommRing S] {f : R →+* S} {g : SR} (hf : Function.RightInverse g f) (x : R RingHom.ker f) :
      @[simp]
      noncomputable def RingHom.quotientKerEquivOfSurjective {R : Type u} {S : Type v} [CommRing R] [CommRing S] {f : R →+* S} (hf : Function.Surjective f) :

      The first isomorphism theorem for commutative rings.

      Equations
      Instances For
        @[simp]
        theorem Ideal.mk_ker {R : Type u} [CommRing R] {I : Ideal R} :
        theorem Ideal.map_mk_eq_bot_of_le {R : Type u} [CommRing R] {I : Ideal R} {J : Ideal R} (h : I J) :
        @[simp]
        theorem Ideal.mem_quotient_iff_mem_sup {R : Type u} [CommRing R] {I : Ideal R} {J : Ideal R} {x : R} :

        See also Ideal.mem_quotient_iff_mem in case I ≤ J.

        theorem Ideal.mem_quotient_iff_mem {R : Type u} [CommRing R] {I : Ideal R} {J : Ideal R} (hIJ : I J) {x : R} :

        See also Ideal.mem_quotient_iff_mem_sup if the assumption I ≤ J is not available.

        instance Ideal.Quotient.algebra (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] {I : Ideal A} :
        Algebra R₁ (A I)

        The R₁-algebra structure on A/I for an R₁-algebra A

        Equations
        • One or more equations did not get rendered due to their size.
        instance Ideal.Quotient.isScalarTower (R₁ : Type u_1) (R₂ : Type u_2) {A : Type u_3} [CommSemiring R₁] [CommSemiring R₂] [CommRing A] [Algebra R₁ A] [Algebra R₂ A] [SMul R₁ R₂] [IsScalarTower R₁ R₂ A] (I : Ideal A) :
        IsScalarTower R₁ R₂ (A I)
        Equations
        def Ideal.Quotient.mkₐ (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] (I : Ideal A) :
        A →ₐ[R₁] A I

        The canonical morphism A →ₐ[R₁] A ⧸ I as morphism of R₁-algebras, for I an ideal of A, where A is an R₁-algebra.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem Ideal.Quotient.algHom_ext (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] {I : Ideal A} {S : Type u_5} [Semiring S] [Algebra R₁ S] ⦃f : A I →ₐ[R₁] S ⦃g : A I →ₐ[R₁] S (h : AlgHom.comp f (Ideal.Quotient.mkₐ R₁ I) = AlgHom.comp g (Ideal.Quotient.mkₐ R₁ I)) :
          f = g
          theorem Ideal.Quotient.alg_map_eq (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] (I : Ideal A) :
          algebraMap R₁ (A I) = RingHom.comp (algebraMap A (A I)) (algebraMap R₁ A)
          theorem Ideal.Quotient.mkₐ_toRingHom (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] (I : Ideal A) :
          @[simp]
          theorem Ideal.Quotient.mkₐ_eq_mk (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] (I : Ideal A) :
          @[simp]
          theorem Ideal.Quotient.mk_comp_algebraMap (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] (I : Ideal A) :
          @[simp]
          theorem Ideal.Quotient.mk_algebraMap (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] (I : Ideal A) (x : R₁) :
          ↑(Ideal.Quotient.mk I) (↑(algebraMap R₁ A) x) = ↑(algebraMap R₁ (A I)) x
          theorem Ideal.Quotient.mkₐ_surjective (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] (I : Ideal A) :

          The canonical morphism A →ₐ[R₁] I.quotient is surjective.

          @[simp]
          theorem Ideal.Quotient.mkₐ_ker (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] (I : Ideal A) :

          The kernel of A →ₐ[R₁] I.quotient is I.

          def Ideal.Quotient.liftₐ {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (I : Ideal A) (f : A →ₐ[R₁] B) (hI : ∀ (a : A), a If a = 0) :
          A I →ₐ[R₁] B

          Ideal.quotient.lift as an AlgHom.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem Ideal.Quotient.liftₐ_apply {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (I : Ideal A) (f : A →ₐ[R₁] B) (hI : ∀ (a : A), a If a = 0) (x : A I) :
            ↑(Ideal.Quotient.liftₐ I f hI) x = ↑(Ideal.Quotient.lift I (f) hI) x
            theorem Ideal.Quotient.liftₐ_comp {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (I : Ideal A) (f : A →ₐ[R₁] B) (hI : ∀ (a : A), a If a = 0) :
            theorem Ideal.KerLift.map_smul {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (f : A →ₐ[R₁] B) (r : R₁) (x : A RingHom.ker f) :
            ↑(RingHom.kerLift f) (r x) = r ↑(RingHom.kerLift f) x
            def Ideal.kerLiftAlg {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (f : A →ₐ[R₁] B) :
            A RingHom.ker f →ₐ[R₁] B

            The induced algebras morphism from the quotient by the kernel to the codomain.

            This is an isomorphism if f has a right inverse (quotientKerAlgEquivOfRightInverse) / is surjective (quotientKerAlgEquivOfSurjective).

            Equations
            Instances For
              @[simp]
              theorem Ideal.kerLiftAlg_mk {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (f : A →ₐ[R₁] B) (a : A) :
              ↑(Ideal.kerLiftAlg f) (↑(Ideal.Quotient.mk (RingHom.ker f)) a) = f a
              @[simp]
              theorem Ideal.kerLiftAlg_toRingHom {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (f : A →ₐ[R₁] B) :
              theorem Ideal.kerLiftAlg_injective {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (f : A →ₐ[R₁] B) :

              The induced algebra morphism from the quotient by the kernel is injective.

              def Ideal.quotientKerAlgEquivOfRightInverse {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] {f : A →ₐ[R₁] B} {g : BA} (hf : Function.RightInverse g f) :
              (A RingHom.ker f) ≃ₐ[R₁] B

              The first isomorphism theorem for algebras, computable version.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem Ideal.quotientKerAlgEquivOfRightInverse.apply {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] {f : A →ₐ[R₁] B} {g : BA} (hf : Function.RightInverse g f) (x : A RingHom.ker f) :
                @[simp]
                theorem Ideal.QuotientKerAlgEquivOfRightInverseSymm.apply {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] {f : A →ₐ[R₁] B} {g : BA} (hf : Function.RightInverse g f) (x : B) :
                noncomputable def Ideal.quotientKerAlgEquivOfSurjective {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] {f : A →ₐ[R₁] B} (hf : Function.Surjective f) :
                (A RingHom.ker f) ≃ₐ[R₁] B

                The first isomorphism theorem for algebras.

                Equations
                Instances For
                  def Ideal.quotientMap {R : Type u} {S : Type v} [CommRing R] [CommRing S] {I : Ideal R} (J : Ideal S) (f : R →+* S) (hIJ : I Ideal.comap f J) :
                  R I →+* S J

                  The ring hom R/I →+* S/J induced by a ring hom f : R →+* S with I ≤ f⁻¹(J)

                  Equations
                  Instances For
                    @[simp]
                    theorem Ideal.quotientMap_mk {R : Type u} {S : Type v} [CommRing R] [CommRing S] {J : Ideal R} {I : Ideal S} {f : R →+* S} {H : J Ideal.comap f I} {x : R} :
                    ↑(Ideal.quotientMap I f H) (↑(Ideal.Quotient.mk J) x) = ↑(Ideal.Quotient.mk I) (f x)
                    @[simp]
                    theorem Ideal.quotientMap_algebraMap {S : Type v} [CommRing S] {R₁ : Type u_1} {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] {J : Ideal A} {I : Ideal S} {f : A →+* S} {H : J Ideal.comap f I} {x : R₁} :
                    ↑(Ideal.quotientMap I f H) (↑(algebraMap R₁ (A J)) x) = ↑(Ideal.Quotient.mk I) (f (↑(algebraMap R₁ A) x))
                    @[simp]
                    theorem Ideal.quotientEquiv_apply {R : Type u} {S : Type v} [CommRing R] [CommRing S] (I : Ideal R) (J : Ideal S) (f : R ≃+* S) (hIJ : J = Ideal.map (f) I) :
                    ∀ (a : R I), ↑(Ideal.quotientEquiv I J f hIJ) a = OneHom.toFun (↑(Ideal.quotientMap J f (_ : I Ideal.comap (f) J))) a
                    @[simp]
                    theorem Ideal.quotientEquiv_symm_apply {R : Type u} {S : Type v} [CommRing R] [CommRing S] (I : Ideal R) (J : Ideal S) (f : R ≃+* S) (hIJ : J = Ideal.map (f) I) (a : S J) :
                    def Ideal.quotientEquiv {R : Type u} {S : Type v} [CommRing R] [CommRing S] (I : Ideal R) (J : Ideal S) (f : R ≃+* S) (hIJ : J = Ideal.map (f) I) :
                    R I ≃+* S J

                    The ring equiv R/I ≃+* S/J induced by a ring equiv f : R ≃+** S, where J = f(I).

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem Ideal.quotientEquiv_mk {R : Type u} {S : Type v} [CommRing R] [CommRing S] (I : Ideal R) (J : Ideal S) (f : R ≃+* S) (hIJ : J = Ideal.map (f) I) (x : R) :
                      ↑(Ideal.quotientEquiv I J f hIJ) (↑(Ideal.Quotient.mk I) x) = ↑(Ideal.Quotient.mk J) (f x)
                      @[simp]
                      theorem Ideal.quotientEquiv_symm_mk {R : Type u} {S : Type v} [CommRing R] [CommRing S] (I : Ideal R) (J : Ideal S) (f : R ≃+* S) (hIJ : J = Ideal.map (f) I) (x : S) :
                      theorem Ideal.quotientMap_injective' {R : Type u} {S : Type v} [CommRing R] [CommRing S] {J : Ideal R} {I : Ideal S} {f : R →+* S} {H : J Ideal.comap f I} (h : Ideal.comap f I J) :

                      H and h are kept as separate hypothesis since H is used in constructing the quotient map.

                      theorem Ideal.quotientMap_injective {R : Type u} {S : Type v} [CommRing R] [CommRing S] {I : Ideal S} {f : R →+* S} :

                      If we take J = I.comap f then QuotientMap is injective automatically.

                      theorem Ideal.quotientMap_surjective {R : Type u} {S : Type v} [CommRing R] [CommRing S] {J : Ideal R} {I : Ideal S} {f : R →+* S} {H : J Ideal.comap f I} (hf : Function.Surjective f) :
                      theorem Ideal.comp_quotientMap_eq_of_comp_eq {R : Type u} {S : Type v} [CommRing R] [CommRing S] {R' : Type u_5} {S' : Type u_6} [CommRing R'] [CommRing S'] {f : R →+* S} {f' : R' →+* S'} {g : R →+* R'} {g' : S →+* S'} (hfg : RingHom.comp f' g = RingHom.comp g' f) (I : Ideal S') :

                      Commutativity of a square is preserved when taking quotients by an ideal.

                      def Ideal.quotientMapₐ {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] {I : Ideal A} (J : Ideal B) (f : A →ₐ[R₁] B) (hIJ : I Ideal.comap f J) :
                      A I →ₐ[R₁] B J

                      The algebra hom A/I →+* B/J induced by an algebra hom f : A →ₐ[R₁] B with I ≤ f⁻¹(J).

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem Ideal.quotient_map_mkₐ {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] {I : Ideal A} (J : Ideal B) (f : A →ₐ[R₁] B) (H : I Ideal.comap f J) {x : A} :
                        ↑(Ideal.quotientMapₐ J f H) (↑(Ideal.Quotient.mk I) x) = ↑(Ideal.Quotient.mkₐ R₁ J) (f x)
                        theorem Ideal.quotient_map_comp_mkₐ {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] {I : Ideal A} (J : Ideal B) (f : A →ₐ[R₁] B) (H : I Ideal.comap f J) :
                        def Ideal.quotientEquivAlg {R₁ : Type u_1} {A : Type u_3} {B : Type u_4} [CommSemiring R₁] [CommRing A] [CommRing B] [Algebra R₁ A] [Algebra R₁ B] (I : Ideal A) (J : Ideal B) (f : A ≃ₐ[R₁] B) (hIJ : J = Ideal.map (f) I) :
                        (A I) ≃ₐ[R₁] B J

                        The algebra equiv A/I ≃ₐ[R] B/J induced by an algebra equiv f : A ≃ₐ[R] B, whereJ = f(I).

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          instance Ideal.quotientAlgebra {R : Type u} [CommRing R] {A : Type u_3} [CommRing A] {I : Ideal A} [Algebra R A] :
                          Equations
                          def Ideal.quotientEquivAlgOfEq (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] {I : Ideal A} {J : Ideal A} (h : I = J) :
                          (A I) ≃ₐ[R₁] A J

                          Quotienting by equal ideals gives equivalent algebras.

                          Equations
                          Instances For
                            @[simp]
                            theorem Ideal.quotientEquivAlgOfEq_mk (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] {I : Ideal A} {J : Ideal A} (h : I = J) (x : A) :
                            @[simp]
                            theorem Ideal.quotientEquivAlgOfEq_symm (R₁ : Type u_1) {A : Type u_3} [CommSemiring R₁] [CommRing A] [Algebra R₁ A] {I : Ideal A} {J : Ideal A} (h : I = J) :
                            theorem Ideal.comap_map_mk {R : Type u} [CommRing R] {I : Ideal R} {J : Ideal R} (h : I J) :
                            def DoubleQuot.quotLeftToQuotSup {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) :
                            R I →+* R I J

                            The obvious ring hom R/I → R/(I ⊔ J)

                            Equations
                            Instances For
                              def DoubleQuot.quotQuotToQuotSup {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) :

                              The ring homomorphism (R/I)/J' -> R/(I ⊔ J) induced by quotLeftToQuotSup where J' is the image of J in R/I

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                def DoubleQuot.quotQuotMk {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) :

                                The composite of the maps R → (R/I) and (R/I) → (R/I)/J'

                                Equations
                                Instances For

                                  The kernel of quotQuotMk

                                  def DoubleQuot.liftSupQuotQuotMk {R : Type u} [CommRing R] (I : Ideal R) (J : Ideal R) :

                                  The ring homomorphism R/(I ⊔ J) → (R/I)/J' induced by quotQuotMk

                                  Equations
                                  Instances For

                                    quotQuotToQuotSup and liftSupQuotQuotMk are inverse isomorphisms. In the case where I ≤ J, this is the Third Isomorphism Theorem (see quotQuotEquivQuotOfLe)

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[simp]

                                      The obvious isomorphism (R/I)/J' → (R/J)/I'

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        @[simp]
                                        def DoubleQuot.quotQuotEquivQuotOfLE {R : Type u} [CommRing R] {I : Ideal R} {J : Ideal R} (h : I J) :

                                        The Third Isomorphism theorem for rings. See quotQuotEquivQuotSup for a version that does not assume an inclusion of ideals.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem DoubleQuot.quotQuotEquivQuotOfLE_quotQuotMk {R : Type u} [CommRing R] {I : Ideal R} {J : Ideal R} (x : R) (h : I J) :
                                          @[simp]
                                          @[simp]
                                          theorem DoubleQuot.quotQuotEquivQuotSup_quot_quot_algebraMap {R : Type u} [CommSemiring R] {A : Type v} [CommRing A] [Algebra R A] (I : Ideal A) (J : Ideal A) (x : R) :
                                          ↑(DoubleQuot.quotQuotEquivQuotSup I J) (↑(algebraMap R ((A I) Ideal.map (Ideal.Quotient.mk I) J)) x) = ↑(algebraMap R (A I J)) x
                                          @[simp]
                                          theorem DoubleQuot.quotQuotEquivComm_algebraMap {R : Type u} [CommSemiring R] {A : Type v} [CommRing A] [Algebra R A] (I : Ideal A) (J : Ideal A) (x : R) :
                                          def DoubleQuot.quotLeftToQuotSupₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I : Ideal A) (J : Ideal A) :
                                          A I →ₐ[R] A I J

                                          The natural algebra homomorphism A / I → A / (I ⊔ J).

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            def DoubleQuot.quotQuotToQuotSupₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I : Ideal A) (J : Ideal A) :

                                            The algebra homomorphism (A / I) / J' -> A / (I ⊔ J) induced by quotQuotToQuotSup, where J' is the projection of J in A / I.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              def DoubleQuot.quotQuotMkₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I : Ideal A) (J : Ideal A) :

                                              The composition of the algebra homomorphisms A → (A / I) and (A / I) → (A / I) / J', where J' is the projection J in A / I.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                @[simp]
                                                @[simp]
                                                theorem DoubleQuot.coe_quotQuotMkₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I : Ideal A) (J : Ideal A) :
                                                def DoubleQuot.liftSupQuotQuotMkₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I : Ideal A) (J : Ideal A) :

                                                The injective algebra homomorphism A / (I ⊔ J) → (A / I) / J'induced by quot_quot_mk, where J' is the projection J in A / I.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  def DoubleQuot.quotQuotEquivQuotSupₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] (I : Ideal A) (J : Ideal A) :

                                                  quotQuotToQuotSup and liftSupQuotQuotMk are inverse isomorphisms. In the case where I ≤ J, this is the Third Isomorphism Theorem (see DoubleQuot.quotQuotEquivQuotOfLE).

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    The natural algebra isomorphism (A / I) / J' → (A / J) / I', where J' (resp. I') is the projection of J in A / I (resp. I in A / J).

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      def DoubleQuot.quotQuotEquivQuotOfLEₐ (R : Type u) {A : Type u_1} [CommSemiring R] [CommRing A] [Algebra R A] {I : Ideal A} {J : Ideal A} (h : I J) :

                                                      The third isomorphism theorem for algebras. See quotQuotEquivQuotSupₐ for version that does not assume an inclusion of ideals.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For