Documentation

FltRegular.Norm.NormPrime

theorem exists_int_sModEq {K : Type u_1} [Field K] (pb : PowerBasis { x // x NumberField.ringOfIntegers K }) (x : { x // x NumberField.ringOfIntegers K }) :
n, x n [SMOD Ideal.span {pb.gen}]
theorem gen_ne_zero {K : Type u_1} [Field K] {pb : PowerBasis { x // x NumberField.ringOfIntegers K }} [NumberField K] (hpr : Prime (↑(RingOfIntegers.norm ) pb.gen)) :
pb.gen 0
theorem SModEq.Ideal_def {R : Type u_1} [CommRing R] (I : Ideal R) (x : R) (y : R) :
theorem norm_intCast {K : Type u_1} [Field K] [NumberField K] (n : ) :
theorem prime_of_norm_prime {K : Type u_1} [Field K] {pb : PowerBasis { x // x NumberField.ringOfIntegers K }} [NumberField K] (hpr : Prime (↑(RingOfIntegers.norm ) pb.gen)) [IsGalois K] :
Prime pb.gen