Norm in number fields #
Given a finite extension of number fields, we define the norm morphism as a function between the rings of integers.
Main definitions #
RingOfIntegers.norm K
:Algebra.norm
as a morphism(𝓞 L) →* (𝓞 K)
.
Main results #
RingOfIntegers.dvd_norm
: ifL/K
is a finite Galois extension of fields, then, for all(x : 𝓞 L)
we have thatx ∣ algebraMap (𝓞 K) (𝓞 L) (norm K x)
.
@[simp]
theorem
RingOfIntegers.norm_apply_coe
{L : Type u_1}
(K : Type u_2)
[Field K]
[Field L]
[Algebra K L]
[FiniteDimensional K L]
[IsSeparable K L]
(n : { x // x ∈ NumberField.ringOfIntegers L })
:
↑(↑(RingOfIntegers.norm K) n) = ↑(Algebra.norm K) ↑n
noncomputable def
RingOfIntegers.norm
{L : Type u_1}
(K : Type u_2)
[Field K]
[Field L]
[Algebra K L]
[FiniteDimensional K L]
[IsSeparable K L]
:
{ x // x ∈ NumberField.ringOfIntegers L } →* { x // x ∈ NumberField.ringOfIntegers K }
Algebra.norm
as a morphism betwen the rings of integers.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
RingOfIntegers.coe_algebraMap_norm
{L : Type u_1}
(K : Type u_2)
[Field K]
[Field L]
[Algebra K L]
[FiniteDimensional K L]
[IsSeparable K L]
(x : { x // x ∈ NumberField.ringOfIntegers L })
:
↑(↑(algebraMap { x // x ∈ NumberField.ringOfIntegers K } { x // x ∈ NumberField.ringOfIntegers L })
(↑(RingOfIntegers.norm K) x)) = ↑(algebraMap K L) (↑(Algebra.norm K) ↑x)
theorem
RingOfIntegers.coe_norm_algebraMap
{L : Type u_1}
(K : Type u_2)
[Field K]
[Field L]
[Algebra K L]
[FiniteDimensional K L]
[IsSeparable K L]
(x : { x // x ∈ NumberField.ringOfIntegers K })
:
↑(↑(RingOfIntegers.norm K)
(↑(algebraMap { x // x ∈ NumberField.ringOfIntegers K } { x // x ∈ NumberField.ringOfIntegers L }) x)) = ↑(Algebra.norm K) (↑(algebraMap K L) ↑x)
theorem
RingOfIntegers.norm_algebraMap
{L : Type u_1}
(K : Type u_2)
[Field K]
[Field L]
[Algebra K L]
[FiniteDimensional K L]
[IsSeparable K L]
(x : { x // x ∈ NumberField.ringOfIntegers K })
:
↑(RingOfIntegers.norm K)
(↑(algebraMap { x // x ∈ NumberField.ringOfIntegers K } { x // x ∈ NumberField.ringOfIntegers L }) x) = x ^ FiniteDimensional.finrank K L
theorem
RingOfIntegers.isUnit_norm_of_isGalois
{L : Type u_1}
(K : Type u_2)
[Field K]
[Field L]
[Algebra K L]
[FiniteDimensional K L]
[IsGalois K L]
{x : { x // x ∈ NumberField.ringOfIntegers L }}
:
IsUnit (↑(RingOfIntegers.norm K) x) ↔ IsUnit x
theorem
RingOfIntegers.dvd_norm
{L : Type u_1}
(K : Type u_2)
[Field K]
[Field L]
[Algebra K L]
[FiniteDimensional K L]
[IsGalois K L]
(x : { x // x ∈ NumberField.ringOfIntegers L })
:
x ∣ ↑(algebraMap { x // x ∈ NumberField.ringOfIntegers K } { x // x ∈ NumberField.ringOfIntegers L })
(↑(RingOfIntegers.norm K) x)
If L/K
is a finite Galois extension of fields, then, for all (x : 𝓞 L)
we have that
x ∣ algebraMap (𝓞 K) (𝓞 L) (norm K x)
.
theorem
RingOfIntegers.norm_norm
{L : Type u_1}
(K : Type u_2)
[Field K]
[Field L]
[Algebra K L]
[FiniteDimensional K L]
(F : Type u_3)
[Field F]
[Algebra K F]
[IsSeparable K F]
[FiniteDimensional K F]
[IsSeparable K L]
[Algebra F L]
[IsSeparable F L]
[FiniteDimensional F L]
[IsScalarTower K F L]
(x : { x // x ∈ NumberField.ringOfIntegers L })
:
↑(RingOfIntegers.norm K) (↑(RingOfIntegers.norm F) x) = ↑(RingOfIntegers.norm K) x
theorem
RingOfIntegers.isUnit_norm
(K : Type u_2)
[Field K]
{F : Type u_3}
[Field F]
[Algebra K F]
[IsSeparable K F]
[FiniteDimensional K F]
[CharZero K]
{x : { x // x ∈ NumberField.ringOfIntegers F }}
:
IsUnit (↑(RingOfIntegers.norm K) x) ↔ IsUnit x