Documentation

FltRegular.CaseII.Statement

Statement of case II.

Equations
Instances For
    theorem FltRegular.not_exists_solution {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [NumberField K] [IsCyclotomicExtension {p} K] (hp : p 2) [Fintype (ClassGroup { x // x NumberField.ringOfIntegers K })] (hreg : Nat.Coprime (p) (Fintype.card (ClassGroup { x // x NumberField.ringOfIntegers K }))) {ζ : K} (hζ : IsPrimitiveRoot ζ p) {m : } (hm : 1 m) :
    ¬x' y' z' ε₃, ¬↑(IsPrimitiveRoot.unit' ) - 1 y' ¬↑(IsPrimitiveRoot.unit' ) - 1 z' x' ^ p + y' ^ p = ε₃ * ((↑(IsPrimitiveRoot.unit' ) - 1) ^ m * z') ^ p
    theorem FltRegular.not_exists_solution' {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [NumberField K] [IsCyclotomicExtension {p} K] (hp : p 2) [Fintype (ClassGroup { x // x NumberField.ringOfIntegers K })] (hreg : Nat.Coprime (p) (Fintype.card (ClassGroup { x // x NumberField.ringOfIntegers K }))) {ζ : K} (hζ : IsPrimitiveRoot ζ p) :
    ¬x y z, ¬↑(IsPrimitiveRoot.unit' ) - 1 y ↑(IsPrimitiveRoot.unit' ) - 1 z z 0 x ^ p + y ^ p = z ^ p
    theorem FltRegular.not_exists_Int_solution {p : } [hpri : Fact (Nat.Prime p)] (hreg : IsRegularPrime p) (hodd : p 2) :
    ¬x y z, ¬p y p z z 0 x ^ p + y ^ p = z ^ p
    theorem FltRegular.not_exists_Int_solution' {p : } [hpri : Fact (Nat.Prime p)] (hreg : IsRegularPrime p) (hodd : p 2) :
    ¬x y z, Finset.gcd {x, y, z} id = 1 p z z 0 x ^ p + y ^ p = z ^ p
    theorem FltRegular.Int.gcd_left_comm (a : ) (b : ) (c : ) :
    Int.gcd a ↑(Int.gcd b c) = Int.gcd b ↑(Int.gcd a c)
    theorem FltRegular.caseII {a : } {b : } {c : } {p : } [hpri : Fact (Nat.Prime p)] (hreg : IsRegularPrime p) (hodd : p 2) (hprod : a * b * c 0) (hgcd : Finset.gcd {a, b, c} id = 1) (caseII : p a * b * c) :
    a ^ p + b ^ p c ^ p

    CaseII.