instance
CharZero.subsemiring
{A : Type u_2}
[Semiring A]
{S : Type u_3}
[SetLike S A]
[SubsemiringClass S A]
[CharZero A]
(x : S)
:
instance
instCharZeroSubtypeMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToAddMonoidWithOneToAddGroupWithOneToRing
{K : Type u_1}
[Field K]
[CharZero K]
:
CharZero { x // x ∈ NumberField.ringOfIntegers K }
Equations
- One or more equations did not get rendered due to their size.
instance
foofoo
{K : Type u_1}
[Field K]
[NumberField K]
:
IsDomain (Ideal { x // x ∈ NumberField.ringOfIntegers K })
Equations
instance
instCancelMonoidWithZeroIdealSubtypeMemSubalgebraIntToCommSemiringInstCommRingIntToSemiringToCommSemiringToCommRingToEuclideanDomainAlgebraIntToRingToDivisionRingInstMembershipInstSetLikeSubalgebraRingOfIntegersToSemiring
{K : Type u_1}
[Field K]
[NumberField K]
:
CancelMonoidWithZero (Ideal { x // x ∈ NumberField.ringOfIntegers K })
Equations
- One or more equations did not get rendered due to their size.
theorem
WfDvdMonoid.multiplicity_finite
{M : Type u_2}
[CancelCommMonoidWithZero M]
[WfDvdMonoid M]
{x : M}
{y : M}
(hx : ¬IsUnit x)
(hy : y ≠ 0)
:
theorem
WfDvdMonoid.multiplicity_finite_iff
{M : Type u_2}
[CancelCommMonoidWithZero M]
[WfDvdMonoid M]
{x : M}
{y : M}
:
theorem
WfDvdMonoid.multiplicity_eq_top_iff
{M : Type u_2}
[CancelCommMonoidWithZero M]
[WfDvdMonoid M]
[DecidableRel fun a b => a ∣ b]
{x : M}
{y : M}
:
theorem
dvd_iff_multiplicity_le
{M : Type u_2}
[CancelCommMonoidWithZero M]
[DecidableRel fun a b => a ∣ b]
[UniqueFactorizationMonoid M]
{a : M}
{b : M}
(ha : a ≠ 0)
:
a ∣ b ↔ ∀ (p : M), Prime p → multiplicity p a ≤ multiplicity p b
theorem
pow_dvd_pow_iff_dvd
{M : Type u_2}
[CancelCommMonoidWithZero M]
[UniqueFactorizationMonoid M]
{a : M}
{b : M}
{x : ℕ}
(h' : x ≠ 0)
:
theorem
isPrincipal_of_isPrincipal_pow_of_Coprime'
{A : Type u_2}
{K : Type u_3}
[CommRing A]
[IsDedekindDomain A]
[Fintype (ClassGroup A)]
[Field K]
[Algebra A K]
[IsFractionRing A K]
(p : ℕ)
(H : Nat.Coprime p (Fintype.card (ClassGroup A)))
(I : FractionalIdeal (nonZeroDivisors A) K)
(hI : Submodule.IsPrincipal ↑(I ^ p))
:
theorem
mul_mem_nthRootsFinset
{R : Type u_2}
{n : ℕ}
[CommRing R]
[IsDomain R]
{η₁ : R}
(hη₁ : η₁ ∈ Polynomial.nthRootsFinset n R)
{η₂ : R}
(hη₂ : η₂ ∈ Polynomial.nthRootsFinset n R)
:
η₁ * η₂ ∈ Polynomial.nthRootsFinset n R
theorem
ne_zero_of_mem_nthRootsFinset
{R : Type u_2}
{n : ℕ}
[CommRing R]
[IsDomain R]
{η : R}
(hη : η ∈ Polynomial.nthRootsFinset n R)
:
η ≠ 0
theorem
IsPrimitiveRoot.prime_span_sub_one
{K : Type u_1}
{p : ℕ+}
[hpri : Fact (PNat.Prime p)]
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
(hp : p ≠ 2)
:
Prime (Ideal.span {↑(IsPrimitiveRoot.unit' hζ) - 1})
theorem
norm_Int_zeta_sub_one
{K : Type u_1}
{p : ℕ+}
[hpri : Fact (PNat.Prime p)]
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
(hp : p ≠ 2)
:
↑(Algebra.norm ℤ) (↑(IsPrimitiveRoot.unit' hζ) - 1) = ↑↑p
theorem
one_mem_nthRootsFinset
{R : Type u_2}
{n : ℕ}
[CommRing R]
[IsDomain R]
(hn : 0 < n)
:
1 ∈ Polynomial.nthRootsFinset n R
theorem
associated_zeta_sub_one_pow_prime
{K : Type u_1}
{p : ℕ+}
[hpri : Fact (PNat.Prime p)]
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
:
Associated ((↑(IsPrimitiveRoot.unit' hζ) - 1) ^ (↑p - 1)) ↑↑p
theorem
isCoprime_of_not_zeta_sub_one_dvd
{K : Type u_1}
{p : ℕ+}
[hpri : Fact (PNat.Prime p)]
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
(hp : p ≠ 2)
{x : { x // x ∈ NumberField.ringOfIntegers K }}
(hx : ¬↑(IsPrimitiveRoot.unit' hζ) - 1 ∣ x)
:
IsCoprime (↑↑p) x
theorem
exists_zeta_sub_one_dvd_sub_Int
{K : Type u_1}
{p : ℕ+}
[hpri : Fact (PNat.Prime p)]
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
(a : { x // x ∈ NumberField.ringOfIntegers K })
:
∃ b, ↑(IsPrimitiveRoot.unit' hζ) - 1 ∣ a - ↑b
theorem
exists_dvd_pow_sub_Int_pow
{K : Type u_1}
{p : ℕ+}
[hpri : Fact (PNat.Prime p)]
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
(hp : p ≠ 2)
(a : { x // x ∈ NumberField.ringOfIntegers K })
:
theorem
norm_dvd_iff
{R : Type u_2}
[CommRing R]
[IsDomain R]
[IsDedekindDomain R]
[Infinite R]
[Module.Free ℤ R]
[Module.Finite ℤ R]
(x : R)
(hx : Prime (↑(Algebra.norm ℤ) x))
{y : ℤ}
:
↑(Algebra.norm ℤ) x ∣ y ↔ x ∣ ↑y
theorem
exists_not_dvd_spanSingleton_eq
{R : Type u_2}
[CommRing R]
[IsDomain R]
[IsDedekindDomain R]
{K : Type u_3}
[Field K]
[Algebra R K]
[IsFractionRing R K]
{x : R}
(hx : Prime x)
(I : Ideal R)
(J : Ideal R)
(hI : ¬Ideal.span {x} ∣ I)
(hJ : ¬Ideal.span {x} ∣ J)
(h : Submodule.IsPrincipal ↑(↑I / ↑J))
:
∃ a b,
¬x ∣ a ∧ ¬x ∣ b ∧ FractionalIdeal.spanSingleton (nonZeroDivisors R) (↑(algebraMap R K) a / ↑(algebraMap R K) b) = ↑I / ↑J
theorem
zeta_sub_one_dvd_Int_iff
{K : Type u_1}
{p : ℕ+}
[hpri : Fact (PNat.Prime p)]
[Field K]
[CharZero K]
[IsCyclotomicExtension {p} ℚ K]
{ζ : K}
(hζ : IsPrimitiveRoot ζ ↑p)
(hp : p ≠ 2)
{n : ℤ}
:
↑(IsPrimitiveRoot.unit' hζ) - 1 ∣ ↑n ↔ ↑↑p ∣ n