Documentation

FltRegular.CaseII.AuxLemmas

instance CharZero.subsemiring {A : Type u_2} [Semiring A] {S : Type u_3} [SetLike S A] [SubsemiringClass S A] [CharZero A] (x : S) :
CharZero { x // x x }
Equations
theorem Ideal.isCoprime_iff_sup {R : Type u_2} [CommSemiring R] {I : Ideal R} {J : Ideal R} :
theorem WfDvdMonoid.multiplicity_finite {M : Type u_2} [CancelCommMonoidWithZero M] [WfDvdMonoid M] {x : M} {y : M} (hx : ¬IsUnit x) (hy : y 0) :
theorem dvd_iff_multiplicity_le {M : Type u_2} [CancelCommMonoidWithZero M] [DecidableRel fun a b => a b] [UniqueFactorizationMonoid M] {a : M} {b : M} (ha : a 0) :
a b ∀ (p : M), Prime pmultiplicity p a multiplicity p b
theorem ENat.mul_mono_left {k : ℕ∞} {n : ℕ∞} {m : ℕ∞} (hk : k 0) (hk' : k ) :
k * n k * m n m
theorem ENat.nsmul_mono {n : ℕ∞} {m : ℕ∞} {k : } (hk : k 0) :
k n k m n m
theorem pow_dvd_pow_iff_dvd {M : Type u_2} [CancelCommMonoidWithZero M] [UniqueFactorizationMonoid M] {a : M} {b : M} {x : } (h' : x 0) :
a ^ x b ^ x a b
theorem mul_mem_nthRootsFinset {R : Type u_2} {n : } [CommRing R] [IsDomain R] {η₁ : R} (hη₁ : η₁ Polynomial.nthRootsFinset n R) {η₂ : R} (hη₂ : η₂ Polynomial.nthRootsFinset n R) :
theorem ne_zero_of_mem_nthRootsFinset {R : Type u_2} {n : } [CommRing R] [IsDomain R] {η : R} (hη : η Polynomial.nthRootsFinset n R) :
η 0
theorem IsPrimitiveRoot.prime_span_sub_one {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) (hp : p 2) :
theorem norm_Int_zeta_sub_one {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) (hp : p 2) :
↑(Algebra.norm ) (↑(IsPrimitiveRoot.unit' ) - 1) = p
theorem one_mem_nthRootsFinset {R : Type u_2} {n : } [CommRing R] [IsDomain R] (hn : 0 < n) :
theorem associated_zeta_sub_one_pow_prime {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) :
Associated ((↑(IsPrimitiveRoot.unit' ) - 1) ^ (p - 1)) p
theorem isCoprime_of_not_zeta_sub_one_dvd {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) (hp : p 2) {x : { x // x NumberField.ringOfIntegers K }} (hx : ¬↑(IsPrimitiveRoot.unit' ) - 1 x) :
IsCoprime (p) x
theorem exists_zeta_sub_one_dvd_sub_Int {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) (a : { x // x NumberField.ringOfIntegers K }) :
b, ↑(IsPrimitiveRoot.unit' ) - 1 a - b
theorem exists_dvd_pow_sub_Int_pow {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [CharZero K] [IsCyclotomicExtension {p} K] (hp : p 2) (a : { x // x NumberField.ringOfIntegers K }) :
b, p a ^ p - b ^ p
theorem norm_dvd_iff {R : Type u_2} [CommRing R] [IsDomain R] [IsDedekindDomain R] [Infinite R] [Module.Free R] [Module.Finite R] (x : R) (hx : Prime (↑(Algebra.norm ) x)) {y : } :
↑(Algebra.norm ) x y x y
theorem exists_not_dvd_spanSingleton_eq {R : Type u_2} [CommRing R] [IsDomain R] [IsDedekindDomain R] {K : Type u_3} [Field K] [Algebra R K] [IsFractionRing R K] {x : R} (hx : Prime x) (I : Ideal R) (J : Ideal R) (hI : ¬Ideal.span {x} I) (hJ : ¬Ideal.span {x} J) (h : Submodule.IsPrincipal ↑(I / J)) :
a b, ¬x a ¬x b FractionalIdeal.spanSingleton (nonZeroDivisors R) (↑(algebraMap R K) a / ↑(algebraMap R K) b) = I / J
theorem zeta_sub_one_dvd_Int_iff {K : Type u_1} {p : ℕ+} [hpri : Fact (PNat.Prime p)] [Field K] [CharZero K] [IsCyclotomicExtension {p} K] {ζ : K} (hζ : IsPrimitiveRoot ζ p) (hp : p 2) {n : } :
↑(IsPrimitiveRoot.unit' ) - 1 n p n