Documentation

FltRegular.CaseI.Statement

Statement of case I with additional assumptions.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Statement of case I.

    Equations
    Instances For
      theorem FltRegular.ab_coprime {p : } {a : } {b : } {c : } (H : a ^ p + b ^ p = c ^ p) (hpzero : p 0) (hgcd : Finset.gcd {a, b, c} id = 1) :
      instance FltRegular.foo1 (p : ) [hpri : Fact (Nat.Prime p)] :
      IsDomain { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) }
      Equations
      instance FltRegular.foo2 (p : ) [hpri : Fact (Nat.Prime p)] :
      IsDedekindDomain { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) }
      Equations
      instance FltRegular.foo3 (p : ) [hpri : Fact (Nat.Prime p)] :
      IsDomain (Ideal { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) })
      Equations
      noncomputable instance FltRegular.foo4 (p : ) [hpri : Fact (Nat.Prime p)] :
      NormalizedGCDMonoid (Ideal { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) })
      Equations
      • One or more equations did not get rendered due to their size.
      noncomputable instance FltRegular.foo5 (p : ) [hpri : Fact (Nat.Prime p)] :
      GCDMonoid (Ideal { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) })
      Equations
      • One or more equations did not get rendered due to their size.
      theorem FltRegular.exists_ideal {p : } [hpri : Fact (Nat.Prime p)] {a : } {b : } {c : } (h5p : 5 p) (H : a ^ p + b ^ p = c ^ p) (hgcd : Finset.gcd {a, b, c} id = 1) (caseI : ¬p a * b * c) {ζ : { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) }} (hζ : ζ Polynomial.nthRootsFinset p { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) }) :
      I, Ideal.span {a + ζ * b} = I ^ p
      theorem FltRegular.is_principal_aux {p : } [hpri : Fact (Nat.Prime p)] (K' : Type u_1) [Field K'] [CharZero K'] [IsCyclotomicExtension {{ val := p, property := (_ : 0 < p) }} K'] [Fintype (ClassGroup { x // x NumberField.ringOfIntegers K' })] {a : } {b : } {ζ : { x // x NumberField.ringOfIntegers K' }} (hreg : Nat.Coprime p (Fintype.card (ClassGroup { x // x NumberField.ringOfIntegers K' }))) (I : Ideal { x // x NumberField.ringOfIntegers K' }) (hI : Ideal.span {a + ζ * b} = I ^ p) :
      u α, u * α ^ p = a + ζ * b
      theorem FltRegular.is_principal {p : } [hpri : Fact (Nat.Prime p)] {a : } {b : } {c : } {ζ : { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) }} (hreg : IsRegularPrime p) (hp5 : 5 p) (hgcd : Finset.gcd {a, b, c} id = 1) (caseI : ¬p a * b * c) (H : a ^ p + b ^ p = c ^ p) (hζ : IsPrimitiveRoot ζ p) :
      u α, u * α ^ p = a + ζ * b
      theorem FltRegular.ex_fin_div {p : } [hpri : Fact (Nat.Prime p)] {a : } {b : } {c : } {ζ : { x // x NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ) }} (hp5 : 5 p) (hreg : IsRegularPrime p) (hζ : IsPrimitiveRoot ζ p) (hgcd : Finset.gcd {a, b, c} id = 1) (caseI : ¬p a * b * c) (H : a ^ p + b ^ p = c ^ p) :
      k₁ k₂, k₂ k₁ - 1 [ZMOD p] p a + b * ζ - a * ζ ^ k₁ - b * ζ ^ k₂
      def FltRegular.f (a : ) (b : ) (k₁ : ) (k₂ : ) :

      Auxiliary function

      Equations
      • FltRegular.f a b k₁ k₂ x = if x = 0 then a else if x = 1 then b else if x = k₁ then -a else if x = k₂ then -b else 0
      Instances For
        theorem FltRegular.auxf' {p : } (hp5 : 5 p) (a : ) (b : ) (k₁ : Fin p) (k₂ : Fin p) :
        i, i Finset.range p FltRegular.f a b (k₁) (k₂) i = 0
        theorem FltRegular.auxf {p : } (hp5 : 5 p) (a : ) (b : ) (k₁ : Fin p) (k₂ : Fin p) :
        i, FltRegular.f a b k₁ k₂ i = 0
        theorem FltRegular.caseI_easier {p : } [hpri : Fact (Nat.Prime p)] {a : } {b : } {c : } (hreg : IsRegularPrime p) (hp5 : 5 p) (hgcd : Finset.gcd {a, b, c} id = 1) (hab : ¬a b [ZMOD p]) (caseI : ¬p a * b * c) :
        a ^ p + b ^ p c ^ p

        Case I with additional assumptions.

        theorem FltRegular.caseI {a : } {b : } {c : } {p : } [Fact (Nat.Prime p)] (hreg : IsRegularPrime p) (caseI : ¬p a * b * c) :
        a ^ p + b ^ p c ^ p

        CaseI.