Statement of case I with additional assumptions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
FltRegular.foo1
(p : ℕ)
[hpri : Fact (Nat.Prime p)]
:
IsDomain { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) }
Equations
instance
FltRegular.foo2
(p : ℕ)
[hpri : Fact (Nat.Prime p)]
:
IsDedekindDomain { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) }
Equations
instance
FltRegular.foo3
(p : ℕ)
[hpri : Fact (Nat.Prime p)]
:
IsDomain (Ideal { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) })
Equations
noncomputable instance
FltRegular.foo4
(p : ℕ)
[hpri : Fact (Nat.Prime p)]
:
NormalizedGCDMonoid
(Ideal { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) })
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
FltRegular.foo5
(p : ℕ)
[hpri : Fact (Nat.Prime p)]
:
GCDMonoid (Ideal { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) })
Equations
- One or more equations did not get rendered due to their size.
theorem
FltRegular.exists_ideal
{p : ℕ}
[hpri : Fact (Nat.Prime p)]
{a : ℤ}
{b : ℤ}
{c : ℤ}
(h5p : 5 ≤ p)
(H : a ^ p + b ^ p = c ^ p)
(hgcd : Finset.gcd {a, b, c} id = 1)
(caseI : ¬↑p ∣ a * b * c)
{ζ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) }}
(hζ : ζ ∈ Polynomial.nthRootsFinset p
{ x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) })
:
∃ I, Ideal.span {↑a + ζ * ↑b} = I ^ p
theorem
FltRegular.IsPrincipal_of_IsPrincipal_pow_of_Coprime
{p : ℕ}
(A : Type u_1)
[CommRing A]
[IsDedekindDomain A]
[Fintype (ClassGroup A)]
(H : Nat.Coprime p (Fintype.card (ClassGroup A)))
(I : Ideal A)
(hI : Submodule.IsPrincipal (I ^ p))
:
theorem
FltRegular.is_principal_aux
{p : ℕ}
[hpri : Fact (Nat.Prime p)]
(K' : Type u_1)
[Field K']
[CharZero K']
[IsCyclotomicExtension {{ val := p, property := (_ : 0 < p) }} ℚ K']
[Fintype (ClassGroup { x // x ∈ NumberField.ringOfIntegers K' })]
{a : ℤ}
{b : ℤ}
{ζ : { x // x ∈ NumberField.ringOfIntegers K' }}
(hreg : Nat.Coprime p (Fintype.card (ClassGroup { x // x ∈ NumberField.ringOfIntegers K' })))
(I : Ideal { x // x ∈ NumberField.ringOfIntegers K' })
(hI : Ideal.span {↑a + ζ * ↑b} = I ^ p)
:
theorem
FltRegular.is_principal
{p : ℕ}
[hpri : Fact (Nat.Prime p)]
{a : ℤ}
{b : ℤ}
{c : ℤ}
{ζ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) }}
(hreg : IsRegularPrime p)
(hp5 : 5 ≤ p)
(hgcd : Finset.gcd {a, b, c} id = 1)
(caseI : ¬↑p ∣ a * b * c)
(H : a ^ p + b ^ p = c ^ p)
(hζ : IsPrimitiveRoot ζ p)
:
theorem
FltRegular.ex_fin_div
{p : ℕ}
[hpri : Fact (Nat.Prime p)]
{a : ℤ}
{b : ℤ}
{c : ℤ}
{ζ : { x // x ∈ NumberField.ringOfIntegers (CyclotomicField { val := p, property := (_ : 0 < p) } ℚ) }}
(hp5 : 5 ≤ p)
(hreg : IsRegularPrime p)
(hζ : IsPrimitiveRoot ζ p)
(hgcd : Finset.gcd {a, b, c} id = 1)
(caseI : ¬↑p ∣ a * b * c)
(H : a ^ p + b ^ p = c ^ p)
:
theorem
FltRegular.auxf'
{p : ℕ}
(hp5 : 5 ≤ p)
(a : ℤ)
(b : ℤ)
(k₁ : Fin p)
(k₂ : Fin p)
:
∃ i, i ∈ Finset.range p ∧ FltRegular.f a b (↑k₁) (↑k₂) i = 0
theorem
FltRegular.auxf
{p : ℕ}
(hp5 : 5 ≤ p)
(a : ℤ)
(b : ℤ)
(k₁ : Fin p)
(k₂ : Fin p)
:
∃ i, FltRegular.f a b ↑k₁ ↑k₂ ↑i = 0