Documentation

Mathlib.Topology.UniformSpace.Pi

Indexed product of uniform spaces #

instance Pi.uniformSpace {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] :
UniformSpace ((i : ι) → α i)
Equations
theorem Pi.uniformSpace_eq {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] :
Pi.uniformSpace α = ⨅ (i : ι), UniformSpace.comap (fun a => a i) (U i)
theorem Pi.uniformity {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] :
uniformity ((i : ι) → α i) = ⨅ (i : ι), Filter.comap (fun a => (Prod.fst ((i : ι) → α i) ((i : ι) → α i) a i, Prod.snd ((i : ι) → α i) ((i : ι) → α i) a i)) (uniformity (α i))
theorem uniformContinuous_pi {ι : Type u_1} {α : ιType u} [U : (i : ι) → UniformSpace (α i)] {β : Type u_4} [UniformSpace β] {f : β(i : ι) → α i} :
UniformContinuous f ∀ (i : ι), UniformContinuous fun x => f x i
theorem Pi.uniformContinuous_proj {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] (i : ι) :
UniformContinuous fun a => a i
theorem Pi.uniformContinuous_precomp' {ι : Type u_1} {ι' : Type u_2} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] (φ : ι'ι) :
UniformContinuous fun f j => f (φ j)
theorem Pi.uniformContinuous_precomp {ι : Type u_1} {ι' : Type u_2} {β : Type u_3} [UniformSpace β] (φ : ι'ι) :
UniformContinuous fun x => x φ
theorem Pi.uniformContinuous_postcomp' {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] {β : ιType u_4} [(i : ι) → UniformSpace (β i)] {g : (i : ι) → α iβ i} (hg : ∀ (i : ι), UniformContinuous (g i)) :
UniformContinuous fun f i => g i (f i)
theorem Pi.uniformContinuous_postcomp {ι : Type u_1} {β : Type u_3} [UniformSpace β] {α : Type u_4} [UniformSpace α] {g : αβ} (hg : UniformContinuous g) :
UniformContinuous fun x => g x
theorem Pi.uniformSpace_comap_precomp' {ι : Type u_1} {ι' : Type u_2} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] (φ : ι'ι) :
UniformSpace.comap (fun g i' => g (φ i')) (Pi.uniformSpace fun i' => α (φ i')) = ⨅ (i' : ι'), UniformSpace.comap (Function.eval (φ i')) (U (φ i'))
theorem Pi.uniformSpace_comap_precomp {ι : Type u_1} {ι' : Type u_2} {β : Type u_3} [UniformSpace β] (φ : ι'ι) :
UniformSpace.comap (fun x => x φ) (Pi.uniformSpace fun x => β) = ⨅ (i' : ι'), UniformSpace.comap (Function.eval (φ i')) inst✝
theorem Pi.uniformContinuous_restrict {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] (S : Set ι) :
theorem Pi.uniformSpace_comap_restrict {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] (S : Set ι) :
UniformSpace.comap (Set.restrict S) (Pi.uniformSpace fun i => α i) = ⨅ (i : ι) (_ : i S), UniformSpace.comap (Function.eval i) (U i)
theorem cauchy_pi_iff {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] [Nonempty ι] {l : Filter ((i : ι) → α i)} :
Cauchy l ∀ (i : ι), Cauchy (Filter.map (Function.eval i) l)
theorem cauchy_pi_iff' {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] {l : Filter ((i : ι) → α i)} [Filter.NeBot l] :
Cauchy l ∀ (i : ι), Cauchy (Filter.map (Function.eval i) l)
theorem Cauchy.pi {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] [Nonempty ι] {l : (i : ι) → Filter (α i)} (hl : ∀ (i : ι), Cauchy (l i)) :
instance Pi.complete {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] [∀ (i : ι), CompleteSpace (α i)] :
CompleteSpace ((i : ι) → α i)
Equations
instance Pi.separated {ι : Type u_1} (α : ιType u) [U : (i : ι) → UniformSpace (α i)] [∀ (i : ι), SeparatedSpace (α i)] :
SeparatedSpace ((i : ι) → α i)
Equations