Documentation

Mathlib.Topology.Algebra.Polynomial

Polynomials and limits #

In this file we prove the following lemmas.

Tags #

Polynomial, continuity

theorem Polynomial.continuousAt_aeval {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] [TopologicalSpace A] [TopologicalSemiring A] (p : Polynomial R) {a : A} :
ContinuousAt (fun x => ↑(Polynomial.aeval x) p) a
theorem Polynomial.continuousWithinAt_aeval {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] [TopologicalSpace A] [TopologicalSemiring A] (p : Polynomial R) {s : Set A} {a : A} :
ContinuousWithinAt (fun x => ↑(Polynomial.aeval x) p) s a
theorem Polynomial.continuousOn_aeval {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] [TopologicalSpace A] [TopologicalSemiring A] (p : Polynomial R) {s : Set A} :
ContinuousOn (fun x => ↑(Polynomial.aeval x) p) s
theorem Polynomial.tendsto_abv_eval₂_atTop {R : Type u_1} {S : Type u_2} {k : Type u_3} {α : Type u_4} [Semiring R] [Ring S] [LinearOrderedField k] (f : R →+* S) (abv : Sk) [IsAbsoluteValue abv] (p : Polynomial R) (hd : 0 < Polynomial.degree p) (hf : f (Polynomial.leadingCoeff p) 0) {l : Filter α} {z : αS} (hz : Filter.Tendsto (abv z) l Filter.atTop) :
Filter.Tendsto (fun x => abv (Polynomial.eval₂ f (z x) p)) l Filter.atTop
theorem Polynomial.tendsto_abv_atTop {R : Type u_1} {k : Type u_2} {α : Type u_3} [Ring R] [LinearOrderedField k] (abv : Rk) [IsAbsoluteValue abv] (p : Polynomial R) (h : 0 < Polynomial.degree p) {l : Filter α} {z : αR} (hz : Filter.Tendsto (abv z) l Filter.atTop) :
Filter.Tendsto (fun x => abv (Polynomial.eval (z x) p)) l Filter.atTop
theorem Polynomial.tendsto_abv_aeval_atTop {R : Type u_1} {A : Type u_2} {k : Type u_3} {α : Type u_4} [CommSemiring R] [Ring A] [Algebra R A] [LinearOrderedField k] (abv : Ak) [IsAbsoluteValue abv] (p : Polynomial R) (hd : 0 < Polynomial.degree p) (h₀ : ↑(algebraMap R A) (Polynomial.leadingCoeff p) 0) {l : Filter α} {z : αA} (hz : Filter.Tendsto (abv z) l Filter.atTop) :
Filter.Tendsto (fun x => abv (↑(Polynomial.aeval (z x)) p)) l Filter.atTop
theorem Polynomial.tendsto_norm_atTop {α : Type u_1} {R : Type u_2} [NormedRing R] [IsAbsoluteValue norm] (p : Polynomial R) (h : 0 < Polynomial.degree p) {l : Filter α} {z : αR} (hz : Filter.Tendsto (fun x => z x) l Filter.atTop) :
Filter.Tendsto (fun x => Polynomial.eval (z x) p) l Filter.atTop
theorem Polynomial.eq_one_of_roots_le {F : Type u_3} {K : Type u_4} [CommRing F] [NormedField K] {p : Polynomial F} {f : F →+* K} {B : } (hB : B < 0) (h1 : Polynomial.Monic p) (h2 : Polynomial.Splits f p) (h3 : ∀ (z : K), z Polynomial.roots (Polynomial.map f p)z B) :
p = 1
theorem Polynomial.coeff_le_of_roots_le {F : Type u_3} {K : Type u_4} [CommRing F] [NormedField K] {p : Polynomial F} {f : F →+* K} {B : } (i : ) (h1 : Polynomial.Monic p) (h2 : Polynomial.Splits f p) (h3 : ∀ (z : K), z Polynomial.roots (Polynomial.map f p)z B) :
theorem Polynomial.coeff_bdd_of_roots_le {F : Type u_3} {K : Type u_4} [CommRing F] [NormedField K] {B : } {d : } (f : F →+* K) {p : Polynomial F} (h1 : Polynomial.Monic p) (h2 : Polynomial.Splits f p) (h3 : Polynomial.natDegree p d) (h4 : ∀ (z : K), z Polynomial.roots (Polynomial.map f p)z B) (i : ) :

The coefficients of the monic polynomials of bounded degree with bounded roots are uniformly bounded.