Polynomials and limits #
In this file we prove the following lemmas.
Polynomial.continuous_eval₂
:Polynomial.eval₂
defines a continuous function.Polynomial.continuous_aeval
:Polynomial.aeval
defines a continuous function; we also prove convenience lemmasPolynomial.continuousAt_aeval
,Polynomial.continuousWithinAt_aeval
,Polynomial.continuousOn_aeval
.Polynomial.continuous
:Polynomial.eval
defines a continuous functions; we also prove convenience lemmasPolynomial.continuousAt
,Polynomial.continuousWithinAt
,Polynomial.continuousOn
.Polynomial.tendsto_norm_atTop
:λ x, ‖Polynomial.eval (z x) p‖
tends to infinity provided thatfun x ↦ ‖z x‖
tends to infinity and0 < degree p
;Polynomial.tendsto_abv_eval₂_atTop
,Polynomial.tendsto_abv_atTop
,Polynomial.tendsto_abv_aeval_atTop
: a few versions of the previous statement forIsAbsoluteValue abv
instead of norm.
Tags #
Polynomial, continuity
theorem
Polynomial.continuous_eval₂
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[TopologicalSpace R]
[TopologicalSemiring R]
[Semiring S]
(p : Polynomial S)
(f : S →+* R)
:
Continuous fun x => Polynomial.eval₂ f x p
theorem
Polynomial.continuous
{R : Type u_1}
[Semiring R]
[TopologicalSpace R]
[TopologicalSemiring R]
(p : Polynomial R)
:
Continuous fun x => Polynomial.eval x p
theorem
Polynomial.continuousAt
{R : Type u_1}
[Semiring R]
[TopologicalSpace R]
[TopologicalSemiring R]
(p : Polynomial R)
{a : R}
:
ContinuousAt (fun x => Polynomial.eval x p) a
theorem
Polynomial.continuousWithinAt
{R : Type u_1}
[Semiring R]
[TopologicalSpace R]
[TopologicalSemiring R]
(p : Polynomial R)
{s : Set R}
{a : R}
:
ContinuousWithinAt (fun x => Polynomial.eval x p) s a
theorem
Polynomial.continuousOn
{R : Type u_1}
[Semiring R]
[TopologicalSpace R]
[TopologicalSemiring R]
(p : Polynomial R)
{s : Set R}
:
ContinuousOn (fun x => Polynomial.eval x p) s
theorem
Polynomial.continuous_aeval
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[TopologicalSemiring A]
(p : Polynomial R)
:
Continuous fun x => ↑(Polynomial.aeval x) p
theorem
Polynomial.continuousAt_aeval
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[TopologicalSemiring A]
(p : Polynomial R)
{a : A}
:
ContinuousAt (fun x => ↑(Polynomial.aeval x) p) a
theorem
Polynomial.continuousWithinAt_aeval
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[TopologicalSemiring A]
(p : Polynomial R)
{s : Set A}
{a : A}
:
ContinuousWithinAt (fun x => ↑(Polynomial.aeval x) p) s a
theorem
Polynomial.continuousOn_aeval
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[TopologicalSemiring A]
(p : Polynomial R)
{s : Set A}
:
ContinuousOn (fun x => ↑(Polynomial.aeval x) p) s
theorem
Polynomial.tendsto_abv_eval₂_atTop
{R : Type u_1}
{S : Type u_2}
{k : Type u_3}
{α : Type u_4}
[Semiring R]
[Ring S]
[LinearOrderedField k]
(f : R →+* S)
(abv : S → k)
[IsAbsoluteValue abv]
(p : Polynomial R)
(hd : 0 < Polynomial.degree p)
(hf : ↑f (Polynomial.leadingCoeff p) ≠ 0)
{l : Filter α}
{z : α → S}
(hz : Filter.Tendsto (abv ∘ z) l Filter.atTop)
:
Filter.Tendsto (fun x => abv (Polynomial.eval₂ f (z x) p)) l Filter.atTop
theorem
Polynomial.tendsto_abv_atTop
{R : Type u_1}
{k : Type u_2}
{α : Type u_3}
[Ring R]
[LinearOrderedField k]
(abv : R → k)
[IsAbsoluteValue abv]
(p : Polynomial R)
(h : 0 < Polynomial.degree p)
{l : Filter α}
{z : α → R}
(hz : Filter.Tendsto (abv ∘ z) l Filter.atTop)
:
Filter.Tendsto (fun x => abv (Polynomial.eval (z x) p)) l Filter.atTop
theorem
Polynomial.tendsto_abv_aeval_atTop
{R : Type u_1}
{A : Type u_2}
{k : Type u_3}
{α : Type u_4}
[CommSemiring R]
[Ring A]
[Algebra R A]
[LinearOrderedField k]
(abv : A → k)
[IsAbsoluteValue abv]
(p : Polynomial R)
(hd : 0 < Polynomial.degree p)
(h₀ : ↑(algebraMap R A) (Polynomial.leadingCoeff p) ≠ 0)
{l : Filter α}
{z : α → A}
(hz : Filter.Tendsto (abv ∘ z) l Filter.atTop)
:
Filter.Tendsto (fun x => abv (↑(Polynomial.aeval (z x)) p)) l Filter.atTop
theorem
Polynomial.tendsto_norm_atTop
{α : Type u_1}
{R : Type u_2}
[NormedRing R]
[IsAbsoluteValue norm]
(p : Polynomial R)
(h : 0 < Polynomial.degree p)
{l : Filter α}
{z : α → R}
(hz : Filter.Tendsto (fun x => ‖z x‖) l Filter.atTop)
:
Filter.Tendsto (fun x => ‖Polynomial.eval (z x) p‖) l Filter.atTop
theorem
Polynomial.exists_forall_norm_le
{R : Type u_2}
[NormedRing R]
[IsAbsoluteValue norm]
[ProperSpace R]
(p : Polynomial R)
:
∃ x, ∀ (y : R), ‖Polynomial.eval x p‖ ≤ ‖Polynomial.eval y p‖
theorem
Polynomial.eq_one_of_roots_le
{F : Type u_3}
{K : Type u_4}
[CommRing F]
[NormedField K]
{p : Polynomial F}
{f : F →+* K}
{B : ℝ}
(hB : B < 0)
(h1 : Polynomial.Monic p)
(h2 : Polynomial.Splits f p)
(h3 : ∀ (z : K), z ∈ Polynomial.roots (Polynomial.map f p) → ‖z‖ ≤ B)
:
p = 1
theorem
Polynomial.coeff_le_of_roots_le
{F : Type u_3}
{K : Type u_4}
[CommRing F]
[NormedField K]
{p : Polynomial F}
{f : F →+* K}
{B : ℝ}
(i : ℕ)
(h1 : Polynomial.Monic p)
(h2 : Polynomial.Splits f p)
(h3 : ∀ (z : K), z ∈ Polynomial.roots (Polynomial.map f p) → ‖z‖ ≤ B)
:
‖Polynomial.coeff (Polynomial.map f p) i‖ ≤ B ^ (Polynomial.natDegree p - i) * ↑(Nat.choose (Polynomial.natDegree p) i)
theorem
Polynomial.coeff_bdd_of_roots_le
{F : Type u_3}
{K : Type u_4}
[CommRing F]
[NormedField K]
{B : ℝ}
{d : ℕ}
(f : F →+* K)
{p : Polynomial F}
(h1 : Polynomial.Monic p)
(h2 : Polynomial.Splits f p)
(h3 : Polynomial.natDegree p ≤ d)
(h4 : ∀ (z : K), z ∈ Polynomial.roots (Polynomial.map f p) → ‖z‖ ≤ B)
(i : ℕ)
:
‖Polynomial.coeff (Polynomial.map f p) i‖ ≤ max B 1 ^ d * ↑(Nat.choose d (d / 2))
The coefficients of the monic polynomials of bounded degree with bounded roots are uniformly bounded.