Left and right continuity #
In this file we prove a few lemmas about left and right continuous functions:
continuousWithinAt_Ioi_iff_Ici
: two definitions of right continuity (with(a, ∞)
and with[a, ∞)
) are equivalent;continuousWithinAt_Iio_iff_Iic
: two definitions of left continuity (with(-∞, a)
and with(-∞, a]
) are equivalent;continuousAt_iff_continuous_left_right
,continuousAt_iff_continuous_left'_right'
: a function is continuous ata
if and only if it is left and right continuous ata
.
Tags #
left continuous, right continuous
theorem
continuousWithinAt_Ioi_iff_Ici
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[PartialOrder α]
[TopologicalSpace β]
{a : α}
{f : α → β}
:
ContinuousWithinAt f (Set.Ioi a) a ↔ ContinuousWithinAt f (Set.Ici a) a
theorem
continuousWithinAt_Iio_iff_Iic
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[PartialOrder α]
[TopologicalSpace β]
{a : α}
{f : α → β}
:
ContinuousWithinAt f (Set.Iio a) a ↔ ContinuousWithinAt f (Set.Iic a) a
theorem
nhds_left'_le_nhds_ne
{α : Type u_1}
[TopologicalSpace α]
[PartialOrder α]
(a : α)
:
nhdsWithin a (Set.Iio a) ≤ nhdsWithin a {a}ᶜ
theorem
nhds_right'_le_nhds_ne
{α : Type u_1}
[TopologicalSpace α]
[PartialOrder α]
(a : α)
:
nhdsWithin a (Set.Ioi a) ≤ nhdsWithin a {a}ᶜ
theorem
nhds_left_sup_nhds_right
{α : Type u_1}
[TopologicalSpace α]
[LinearOrder α]
(a : α)
:
nhdsWithin a (Set.Iic a) ⊔ nhdsWithin a (Set.Ici a) = nhds a
theorem
nhds_left'_sup_nhds_right
{α : Type u_1}
[TopologicalSpace α]
[LinearOrder α]
(a : α)
:
nhdsWithin a (Set.Iio a) ⊔ nhdsWithin a (Set.Ici a) = nhds a
theorem
nhds_left_sup_nhds_right'
{α : Type u_1}
[TopologicalSpace α]
[LinearOrder α]
(a : α)
:
nhdsWithin a (Set.Iic a) ⊔ nhdsWithin a (Set.Ioi a) = nhds a
theorem
nhds_left'_sup_nhds_right'
{α : Type u_1}
[TopologicalSpace α]
[LinearOrder α]
(a : α)
:
nhdsWithin a (Set.Iio a) ⊔ nhdsWithin a (Set.Ioi a) = nhdsWithin a {a}ᶜ
theorem
continuousAt_iff_continuous_left_right
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[LinearOrder α]
[TopologicalSpace β]
{a : α}
{f : α → β}
:
ContinuousAt f a ↔ ContinuousWithinAt f (Set.Iic a) a ∧ ContinuousWithinAt f (Set.Ici a) a
theorem
continuousAt_iff_continuous_left'_right'
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[LinearOrder α]
[TopologicalSpace β]
{a : α}
{f : α → β}
:
ContinuousAt f a ↔ ContinuousWithinAt f (Set.Iio a) a ∧ ContinuousWithinAt f (Set.Ioi a) a