Documentation

Mathlib.Topology.Algebra.FilterBasis

Group and ring filter bases #

A GroupFilterBasis is a FilterBasis on a group with some properties relating the basis to the group structure. The main theorem is that a GroupFilterBasis on a group gives a topology on the group which makes it into a topological group with neighborhoods of the neutral element generated by the given basis.

Main definitions and results #

Given a group G and a ring R:

References #

class GroupFilterBasis (G : Type u) [Group G] extends FilterBasis :

A GroupFilterBasis on a group is a FilterBasis satisfying some additional axioms. Example : if G is a topological group then the neighbourhoods of the identity are a GroupFilterBasis. Conversely given a GroupFilterBasis one can define a topology compatible with the group structure on G.

Instances
    class AddGroupFilterBasis (A : Type u) [AddGroup A] extends FilterBasis :

    An AddGroupFilterBasis on an additive group is a FilterBasis satisfying some additional axioms. Example : if G is a topological group then the neighbourhoods of the identity are an AddGroupFilterBasis. Conversely given an AddGroupFilterBasis one can define a topology compatible with the group structure on G.

    Instances
      theorem addGroupFilterBasisOfComm.proof_1 {G : Type u_1} [AddCommGroup G] (sets : Set (Set G)) (nonempty : Set.Nonempty sets) (inter_sets : ∀ (x y : Set G), x setsy setsz, z sets z x y) (x : G) (U : Set G) (U_in : U { sets := sets, nonempty := nonempty, inter_sets := fun {x y} => inter_sets x y }.sets) :
      V, V { sets := sets, nonempty := nonempty, inter_sets := fun {x y} => inter_sets x y }.sets V (fun x => x + x + -x) ⁻¹' U
      def addGroupFilterBasisOfComm {G : Type u_1} [AddCommGroup G] (sets : Set (Set G)) (nonempty : Set.Nonempty sets) (inter_sets : ∀ (x y : Set G), x setsy setsz, z sets z x y) (one : ∀ (U : Set G), U sets0 U) (mul : ∀ (U : Set G), U setsV, V sets V + V U) (inv : ∀ (U : Set G), U setsV, V sets V (fun x => -x) ⁻¹' U) :

      AddGroupFilterBasis constructor in the additive commutative group case.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def groupFilterBasisOfComm {G : Type u_1} [CommGroup G] (sets : Set (Set G)) (nonempty : Set.Nonempty sets) (inter_sets : ∀ (x y : Set G), x setsy setsz, z sets z x y) (one : ∀ (U : Set G), U sets1 U) (mul : ∀ (U : Set G), U setsV, V sets V * V U) (inv : ∀ (U : Set G), U setsV, V sets V (fun x => x⁻¹) ⁻¹' U) :

        GroupFilterBasis constructor in the commutative group case.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Equations
          • AddGroupFilterBasis.instMembershipSetAddGroupFilterBasis = { mem := fun s f => s f.sets }
          Equations
          • GroupFilterBasis.instMembershipSetGroupFilterBasis = { mem := fun s f => s f.sets }
          theorem AddGroupFilterBasis.zero {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
          U B0 U
          theorem GroupFilterBasis.one {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
          U B1 U
          theorem AddGroupFilterBasis.add {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
          U BV, V B V + V U
          theorem GroupFilterBasis.mul {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
          U BV, V B V * V U
          theorem AddGroupFilterBasis.neg {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} {U : Set G} :
          U BV, V B V (fun x => -x) ⁻¹' U
          theorem GroupFilterBasis.inv {G : Type u} [Group G] {B : GroupFilterBasis G} {U : Set G} :
          U BV, V B V (fun x => x⁻¹) ⁻¹' U
          theorem AddGroupFilterBasis.conj {G : Type u} [AddGroup G] {B : AddGroupFilterBasis G} (x₀ : G) {U : Set G} :
          U BV, V B V (fun x => x₀ + x + -x₀) ⁻¹' U
          theorem GroupFilterBasis.conj {G : Type u} [Group G] {B : GroupFilterBasis G} (x₀ : G) {U : Set G} :
          U BV, V B V (fun x => x₀ * x * x₀⁻¹) ⁻¹' U
          theorem AddGroupFilterBasis.instInhabitedAddGroupFilterBasis.proof_4 {G : Type u_1} [AddGroup G] {U : Set G} :
          U { sets := {{0}}, nonempty := (_ : Set.Nonempty {{0}}), inter_sets := (_ : ∀ {x y : Set G}, x {{0}}y {{0}}z, z {{0}} z x y) }.setsV, V { sets := {{0}}, nonempty := (_ : Set.Nonempty {{0}}), inter_sets := (_ : ∀ {x y : Set G}, x {{0}}y {{0}}z, z {{0}} z x y) }.sets V + V U
          theorem AddGroupFilterBasis.instInhabitedAddGroupFilterBasis.proof_5 {G : Type u_1} [AddGroup G] {U : Set G} :
          U { sets := {{0}}, nonempty := (_ : Set.Nonempty {{0}}), inter_sets := (_ : ∀ {x y : Set G}, x {{0}}y {{0}}z, z {{0}} z x y) }.setsV, V { sets := {{0}}, nonempty := (_ : Set.Nonempty {{0}}), inter_sets := (_ : ∀ {x y : Set G}, x {{0}}y {{0}}z, z {{0}} z x y) }.sets V (fun x => -x) ⁻¹' U
          theorem AddGroupFilterBasis.instInhabitedAddGroupFilterBasis.proof_3 {G : Type u_1} [AddGroup G] {U : Set G} :
          U { sets := {{0}}, nonempty := (_ : Set.Nonempty {{0}}), inter_sets := (_ : ∀ {x y : Set G}, x {{0}}y {{0}}z, z {{0}} z x y) }.sets0 U

          The trivial additive group filter basis consists of {0} only. The associated topology is discrete.

          Equations
          • One or more equations did not get rendered due to their size.
          theorem AddGroupFilterBasis.instInhabitedAddGroupFilterBasis.proof_2 {G : Type u_1} [AddGroup G] {x : Set G} {y : Set G} :
          x {{0}}y {{0}}z, z {{0}} z x y
          theorem AddGroupFilterBasis.instInhabitedAddGroupFilterBasis.proof_6 {G : Type u_1} [AddGroup G] (x₀ : G) {U : Set G} :
          U { sets := {{0}}, nonempty := (_ : Set.Nonempty {{0}}), inter_sets := (_ : ∀ {x y : Set G}, x {{0}}y {{0}}z, z {{0}} z x y) }.setsV, V { sets := {{0}}, nonempty := (_ : Set.Nonempty {{0}}), inter_sets := (_ : ∀ {x y : Set G}, x {{0}}y {{0}}z, z {{0}} z x y) }.sets V (fun x => x₀ + x + -x₀) ⁻¹' U

          The trivial group filter basis consists of {1} only. The associated topology is discrete.

          Equations
          • One or more equations did not get rendered due to their size.
          theorem AddGroupFilterBasis.sum_subset_self {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) {U : Set G} (h : U B) :
          U U + U
          theorem GroupFilterBasis.prod_subset_self {G : Type u} [Group G] (B : GroupFilterBasis G) {U : Set G} (h : U B) :
          U U * U

          The neighborhood function of an AddGroupFilterBasis.

          Equations
          Instances For
            def GroupFilterBasis.N {G : Type u} [Group G] (B : GroupFilterBasis G) :
            GFilter G

            The neighborhood function of a GroupFilterBasis.

            Equations
            Instances For
              @[simp]
              theorem AddGroupFilterBasis.N_zero {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) :
              AddGroupFilterBasis.N B 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis
              @[simp]
              theorem GroupFilterBasis.N_one {G : Type u} [Group G] (B : GroupFilterBasis G) :
              GroupFilterBasis.N B 1 = FilterBasis.filter GroupFilterBasis.toFilterBasis
              theorem AddGroupFilterBasis.hasBasis {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) (x : G) :
              Filter.HasBasis (AddGroupFilterBasis.N B x) (fun V => V B) fun V => (fun y => x + y) '' V
              theorem GroupFilterBasis.hasBasis {G : Type u} [Group G] (B : GroupFilterBasis G) (x : G) :
              Filter.HasBasis (GroupFilterBasis.N B x) (fun V => V B) fun V => (fun y => x * y) '' V

              The topological space structure coming from an additive group filter basis.

              Equations
              Instances For

                The topological space structure coming from a group filter basis.

                Equations
                Instances For
                  theorem GroupFilterBasis.nhds_eq {G : Type u} [Group G] (B : GroupFilterBasis G) {x₀ : G} :
                  theorem AddGroupFilterBasis.nhds_zero_eq {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) :
                  nhds 0 = FilterBasis.filter AddGroupFilterBasis.toFilterBasis
                  theorem GroupFilterBasis.nhds_one_eq {G : Type u} [Group G] (B : GroupFilterBasis G) :
                  nhds 1 = FilterBasis.filter GroupFilterBasis.toFilterBasis
                  theorem AddGroupFilterBasis.nhds_hasBasis {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) (x₀ : G) :
                  Filter.HasBasis (nhds x₀) (fun V => V B) fun V => (fun y => x₀ + y) '' V
                  theorem GroupFilterBasis.nhds_hasBasis {G : Type u} [Group G] (B : GroupFilterBasis G) (x₀ : G) :
                  Filter.HasBasis (nhds x₀) (fun V => V B) fun V => (fun y => x₀ * y) '' V
                  theorem AddGroupFilterBasis.mem_nhds_zero {G : Type u} [AddGroup G] (B : AddGroupFilterBasis G) {U : Set G} (hU : U B) :
                  U nhds 0
                  theorem GroupFilterBasis.mem_nhds_one {G : Type u} [Group G] (B : GroupFilterBasis G) {U : Set G} (hU : U B) :
                  U nhds 1

                  If a group is endowed with a topological structure coming from a group filter basis then it's a topological group.

                  Equations

                  If a group is endowed with a topological structure coming from a group filter basis then it's a topological group.

                  Equations
                  class RingFilterBasis (R : Type u) [Ring R] extends AddGroupFilterBasis :

                  A RingFilterBasis on a ring is a FilterBasis satisfying some additional axioms. Example : if R is a topological ring then the neighbourhoods of the identity are a RingFilterBasis. Conversely given a RingFilterBasis on a ring R, one can define a topology on R which is compatible with the ring structure.

                  Instances
                    Equations
                    • RingFilterBasis.instMembershipSetRingFilterBasis = { mem := fun s B => s B.sets }
                    theorem RingFilterBasis.mul {R : Type u} [Ring R] (B : RingFilterBasis R) {U : Set R} (hU : U B) :
                    V, V B V * V U
                    theorem RingFilterBasis.mul_left {R : Type u} [Ring R] (B : RingFilterBasis R) (x₀ : R) {U : Set R} (hU : U B) :
                    V, V B V (fun x => x₀ * x) ⁻¹' U
                    theorem RingFilterBasis.mul_right {R : Type u} [Ring R] (B : RingFilterBasis R) (x₀ : R) {U : Set R} (hU : U B) :
                    V, V B V (fun x => x * x₀) ⁻¹' U

                    The topology associated to a ring filter basis. It has the given basis as a basis of neighborhoods of zero.

                    Equations
                    Instances For

                      If a ring is endowed with a topological structure coming from a ring filter basis then it's a topological ring.

                      Equations
                      structure ModuleFilterBasis (R : Type u_1) (M : Type u_2) [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] extends AddGroupFilterBasis :
                      Type u_2

                      A ModuleFilterBasis on a module is a FilterBasis satisfying some additional axioms. Example : if M is a topological module then the neighbourhoods of zero are a ModuleFilterBasis. Conversely given a ModuleFilterBasis one can define a topology compatible with the module structure on M.

                      Instances For
                        Equations
                        • ModuleFilterBasis.GroupFilterBasis.hasMem = { mem := fun s B => s B.sets }
                        theorem ModuleFilterBasis.smul {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) {U : Set M} (hU : U B) :
                        V, V nhds 0 W, W B V W U
                        theorem ModuleFilterBasis.smul_left {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) (x₀ : R) {U : Set M} (hU : U B) :
                        V, V B V (fun x => x₀ x) ⁻¹' U
                        theorem ModuleFilterBasis.smul_right {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] (B : ModuleFilterBasis R M) (m₀ : M) {U : Set M} (hU : U B) :
                        ∀ᶠ (x : R) in nhds 0, x m₀ U

                        If R is discrete then the trivial additive group filter basis on any R-module is a module filter basis.

                        Equations
                        • One or more equations did not get rendered due to their size.

                        The topology associated to a module filter basis on a module over a topological ring. It has the given basis as a basis of neighborhoods of zero.

                        Equations
                        Instances For
                          def ModuleFilterBasis.topology' {R : Type u_3} {M : Type u_4} [CommRing R] :
                          {x : TopologicalSpace R} → [inst : AddCommGroup M] → [inst_1 : Module R M] → ModuleFilterBasis R MTopologicalSpace M

                          The topology associated to a module filter basis on a module over a topological ring. It has the given basis as a basis of neighborhoods of zero. This version gets the ring topology by unification instead of type class inference.

                          Equations
                          Instances For
                            theorem ContinuousSMul.of_basis_zero {R : Type u_1} {M : Type u_2} [CommRing R] [TopologicalSpace R] [AddCommGroup M] [Module R M] {ι : Type u_3} [TopologicalRing R] [TopologicalSpace M] [TopologicalAddGroup M] {p : ιProp} {b : ιSet M} (h : Filter.HasBasis (nhds 0) p b) (hsmul : ∀ {i : ι}, p iV, V nhds 0 j x, V b j b i) (hsmul_left : ∀ (x₀ : R) {i : ι}, p ij x, b j (fun x => x₀ x) ⁻¹' b i) (hsmul_right : ∀ (m₀ : M) {i : ι}, p i∀ᶠ (x : R) in nhds 0, x m₀ b i) :

                            A topological add group with a basis of 𝓝 0 satisfying the axioms of ModuleFilterBasis is a topological module.

                            This lemma is mathematically useless because one could obtain such a result by applying ModuleFilterBasis.continuousSMul and use the fact that group topologies are characterized by their neighborhoods of 0 to obtain the ContinuousSMul on the pre-existing topology.

                            But it turns out it's just easier to get it as a byproduct of the proof, so this is just a free quality-of-life improvement.

                            If a module is endowed with a topological structure coming from a module filter basis then it's a topological module.

                            Equations
                            def ModuleFilterBasis.ofBases {R : Type u_3} {M : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] (BR : RingFilterBasis R) (BM : AddGroupFilterBasis M) (smul : ∀ {U : Set M}, U BMV, V BR W, W BM V W U) (smul_left : ∀ (x₀ : R) {U : Set M}, U BMV, V BM V (fun x => x₀ x) ⁻¹' U) (smul_right : ∀ (m₀ : M) {U : Set M}, U BMV, V BR V (fun x => x m₀) ⁻¹' U) :

                            Build a module filter basis from compatible ring and additive group filter bases.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For