theorem
Mathlib.Meta.NormNum.isRat_mkRat
{a : ℤ}
{na : ℤ}
{n : ℤ}
{b : ℕ}
{nb : ℕ}
{d : ℕ}
:
Mathlib.Meta.NormNum.IsInt a na →
Mathlib.Meta.NormNum.IsNat b nb →
Mathlib.Meta.NormNum.IsRat (↑na / ↑nb) n d → Mathlib.Meta.NormNum.IsRat (mkRat a b) n d
theorem
Mathlib.Meta.NormNum.isNat_ratCast
{R : Type u_1}
[DivisionRing R]
{q : ℚ}
{n : ℕ}
:
Mathlib.Meta.NormNum.IsNat q n → Mathlib.Meta.NormNum.IsNat (↑q) n
theorem
Mathlib.Meta.NormNum.isInt_ratCast
{R : Type u_1}
[DivisionRing R]
{q : ℚ}
{n : ℤ}
:
Mathlib.Meta.NormNum.IsInt q n → Mathlib.Meta.NormNum.IsInt (↑q) n
theorem
Mathlib.Meta.NormNum.isRat_ratCast
{R : Type u_1}
[DivisionRing R]
[CharZero R]
{q : ℚ}
{n : ℤ}
{d : ℕ}
:
Mathlib.Meta.NormNum.IsRat q n d → Mathlib.Meta.NormNum.IsRat (↑q) n d
The norm_num
extension which identifies an expression RatCast.ratCast q
where norm_num
recognizes q
, returning the cast of q
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Mathlib.Meta.NormNum.isRat_inv_pos
{α : Type u_1}
[DivisionRing α]
[CharZero α]
{a : α}
{n : ℕ}
{d : ℕ}
:
Mathlib.Meta.NormNum.IsRat a (Int.ofNat (Nat.succ n)) d → Mathlib.Meta.NormNum.IsRat a⁻¹ (Int.ofNat d) (Nat.succ n)
theorem
Mathlib.Meta.NormNum.isRat_inv_neg
{α : Type u_1}
[DivisionRing α]
[CharZero α]
{a : α}
{n : ℕ}
{d : ℕ}
:
Mathlib.Meta.NormNum.IsRat a (Int.negOfNat (Nat.succ n)) d →
Mathlib.Meta.NormNum.IsRat a⁻¹ (Int.negOfNat d) (Nat.succ n)