Documentation

Mathlib.RingTheory.Localization.AtPrime

Localizations of commutative rings at the complement of a prime ideal #

Main definitions #

Main results #

Implementation notes #

See RingTheory.Localization.Basic for a design overview.

Tags #

localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions

def Ideal.primeCompl {R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : Ideal.IsPrime P] :

The complement of a prime ideal P ⊆ R is a submonoid of R.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[inline, reducible]
    abbrev IsLocalization.AtPrime {R : Type u_1} [CommSemiring R] (S : Type u_2) [CommSemiring S] [Algebra R S] (P : Ideal R) [hp : Ideal.IsPrime P] :

    Given a prime ideal P, the typeclass IsLocalization.AtPrime S P states that S is isomorphic to the localization of R at the complement of P.

    Equations
    Instances For
      @[inline, reducible]
      abbrev Localization.AtPrime {R : Type u_1} [CommSemiring R] (P : Ideal R) [hp : Ideal.IsPrime P] :
      Type u_1

      Given a prime ideal P, Localization.AtPrime P is a localization of R at the complement of P, as a quotient type.

      Equations
      Instances For

        The localization of R at the complement of a prime ideal is a local ring.

        Equations

        The localization of an integral domain at the complement of a prime ideal is an integral domain.

        Equations

        The unique maximal ideal of the localization at I.primeCompl lies over the ideal I.

        The image of I in the localization at I.primeCompl is a maximal ideal, and in particular it is the unique maximal ideal given by the local ring structure AtPrime.localRing

        noncomputable def Localization.localRingHom {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) :

        For a ring hom f : R →+* S and a prime ideal J in S, the induced ring hom from the localization of R at J.comap f to the localization of S at J.

        To make this definition more flexible, we allow any ideal I of R as input, together with a proof that I = J.comap f. This can be useful when I is not definitionally equal to J.comap f.

        Equations
        Instances For
          theorem Localization.localRingHom_to_map {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) (x : R) :
          ↑(Localization.localRingHom I J f hIJ) (↑(algebraMap R (Localization.AtPrime I)) x) = ↑(algebraMap ((fun x => P) x) (Localization.AtPrime J)) (f x)
          theorem Localization.localRingHom_mk' {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) (x : R) (y : { x // x Ideal.primeCompl I }) :
          ↑(Localization.localRingHom I J f hIJ) (IsLocalization.mk' (Localization.AtPrime I) x y) = IsLocalization.mk' (Localization.AtPrime J) (f x) { val := f y, property := (_ : y Submonoid.comap f (Ideal.primeCompl J)) }
          theorem Localization.localRingHom_unique {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] (J : Ideal P) [Ideal.IsPrime J] (f : R →+* P) (hIJ : I = Ideal.comap f J) {j : Localization.AtPrime I →+* Localization.AtPrime J} (hj : ∀ (x : R), j (↑(algebraMap R (Localization.AtPrime I)) x) = ↑(algebraMap ((fun x => P) x) (Localization.AtPrime J)) (f x)) :
          theorem Localization.localRingHom_comp {R : Type u_1} [CommSemiring R] {P : Type u_3} [CommSemiring P] (I : Ideal R) [hI : Ideal.IsPrime I] {S : Type u_4} [CommSemiring S] (J : Ideal S) [hJ : Ideal.IsPrime J] (K : Ideal P) [hK : Ideal.IsPrime K] (f : R →+* S) (hIJ : I = Ideal.comap f J) (g : S →+* P) (hJK : J = Ideal.comap g K) :