Documentation

Mathlib.Order.ConditionallyCompleteLattice.Finset

Conditionally complete lattices and finite sets. #

theorem Finset.Nonempty.sup'_eq_cSup_image {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice α] {s : Finset β} (hs : Finset.Nonempty s) (f : βα) :
Finset.sup' s hs f = sSup (f '' s)
theorem Set.Finite.cSup_lt_iff {α : Type u_1} [ConditionallyCompleteLinearOrder α] {s : Set α} {a : α} (hs : Set.Finite s) (h : Set.Nonempty s) :
sSup s < a ∀ (x : α), x sx < a
theorem Set.Finite.lt_cInf_iff {α : Type u_1} [ConditionallyCompleteLinearOrder α] {s : Set α} {a : α} (hs : Set.Finite s) (h : Set.Nonempty s) :
a < sInf s ∀ (x : α), x sa < x

Relation between Sup / Inf and Finset.sup' / Finset.inf' #

Like the Sup of a ConditionallyCompleteLattice, Finset.sup' also requires the set to be non-empty. As a result, we can translate between the two.

theorem Finset.sup'_eq_csSup_image {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice β] (s : Finset α) (H : Finset.Nonempty s) (f : αβ) :
Finset.sup' s H f = sSup (f '' s)
theorem Finset.inf'_eq_csInf_image {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLattice β] (s : Finset α) (H : Finset.Nonempty s) (f : αβ) :
Finset.inf' s H f = sInf (f '' s)