Documentation

Mathlib.LinearAlgebra.Basis.Bilinear

Lemmas about bilinear maps with a basis over each argument #

theorem LinearMap.ext_basis {ι₁ : Type u_1} {ι₂ : Type u_2} {R : Type u_3} {R₂ : Type u_4} {S : Type u_5} {S₂ : Type u_6} {M : Type u_7} {N : Type u_8} {P : Type u_9} [CommSemiring R] [CommSemiring S] [CommSemiring R₂] [CommSemiring S₂] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module S N] [Module R₂ P] [Module S₂ P] [SMulCommClass S₂ R₂ P] {ρ₁₂ : R →+* R₂} {σ₁₂ : S →+* S₂} (b₁ : Basis ι₁ R M) (b₂ : Basis ι₂ S N) {B : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P} {B' : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P} (h : ∀ (i : ι₁) (j : ι₂), ↑(B (b₁ i)) (b₂ j) = ↑(B' (b₁ i)) (b₂ j)) :
B = B'

Two bilinear maps are equal when they are equal on all basis vectors.

theorem LinearMap.sum_repr_mul_repr_mulₛₗ {ι₁ : Type u_1} {ι₂ : Type u_2} {R : Type u_3} {R₂ : Type u_4} {S : Type u_5} {S₂ : Type u_6} {M : Type u_7} {N : Type u_8} {P : Type u_9} [CommSemiring R] [CommSemiring S] [CommSemiring R₂] [CommSemiring S₂] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module S N] [Module R₂ P] [Module S₂ P] [SMulCommClass S₂ R₂ P] {ρ₁₂ : R →+* R₂} {σ₁₂ : S →+* S₂} (b₁ : Basis ι₁ R M) (b₂ : Basis ι₂ S N) {B : M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P} (x : M) (y : N) :
(Finsupp.sum (b₁.repr x) fun i xi => Finsupp.sum (b₂.repr y) fun j yj => ρ₁₂ xi σ₁₂ yj ↑(B (b₁ i)) (b₂ j)) = ↑(B x) y

Write out B x y as a sum over B (b i) (b j) if b is a basis.

Version for semi-bilinear maps, see sum_repr_mul_repr_mul for the bilinear version.

theorem LinearMap.sum_repr_mul_repr_mul {ι₁ : Type u_1} {ι₂ : Type u_2} {R : Type u_3} {Mₗ : Type u_10} {Nₗ : Type u_11} {Pₗ : Type u_12} [CommSemiring R] [AddCommMonoid Mₗ] [AddCommMonoid Nₗ] [AddCommMonoid Pₗ] [Module R Mₗ] [Module R Nₗ] [Module R Pₗ] (b₁' : Basis ι₁ R Mₗ) (b₂' : Basis ι₂ R Nₗ) {B : Mₗ →ₗ[R] Nₗ →ₗ[R] Pₗ} (x : Mₗ) (y : Nₗ) :
(Finsupp.sum (b₁'.repr x) fun i xi => Finsupp.sum (b₂'.repr y) fun j yj => xi yj ↑(B (b₁' i)) (b₂' j)) = ↑(B x) y

Write out B x y as a sum over B (b i) (b j) if b is a basis.

Version for bilinear maps, see sum_repr_mul_repr_mulₛₗ for the semi-bilinear version.