Documentation

Mathlib.Init.IteSimp

Simplification lemmas for ite. #

We don't prove them at logic.lean because it is easier to prove them using the tactic framework.

@[simp]
theorem if_true_right_eq_or (p : Prop) [h : Decidable p] (q : Prop) :
(if p then q else True) = (¬p q)
@[simp]
theorem if_true_left_eq_or (p : Prop) [h : Decidable p] (q : Prop) :
(if p then True else q) = (p q)
@[simp]
theorem if_false_right_eq_and (p : Prop) [h : Decidable p] (q : Prop) :
(if p then q else False) = (p q)
@[simp]
theorem if_false_left_eq_and (p : Prop) [h : Decidable p] (q : Prop) :
(if p then False else q) = (¬p q)