Documentation

Mathlib.FieldTheory.Minpoly.IsIntegrallyClosed

Minimal polynomials over a GCD monoid #

This file specializes the theory of minpoly to the case of an algebra over a GCD monoid.

Main results #

theorem minpoly.isIntegrallyClosed_eq_field_fractions {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] (K : Type u_3) (L : Type u_4) [Field K] [Algebra R K] [IsFractionRing R K] [Field L] [Algebra R L] [Algebra S L] [Algebra K L] [IsScalarTower R K L] [IsScalarTower R S L] [IsIntegrallyClosed R] [IsDomain S] {s : S} (hs : IsIntegral R s) :

For integrally closed domains, the minimal polynomial over the ring is the same as the minimal polynomial over the fraction field. See minpoly.isIntegrallyClosed_eq_field_fractions' if S is already a K-algebra.

theorem minpoly.isIntegrallyClosed_eq_field_fractions' {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] (K : Type u_3) [Field K] [Algebra R K] [IsFractionRing R K] [IsIntegrallyClosed R] [IsDomain S] [Algebra K S] [IsScalarTower R K S] {s : S} (hs : IsIntegral R s) :

For integrally closed domains, the minimal polynomial over the ring is the same as the minimal polynomial over the fraction field. Compared to minpoly.isIntegrallyClosed_eq_field_fractions, this version is useful if the element is in a ring that is already a K-algebra.

theorem minpoly.isIntegrallyClosed_dvd {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] [Nontrivial R] {s : S} (hs : IsIntegral R s) {p : Polynomial R} (hp : ↑(Polynomial.aeval s) p = 0) :
minpoly R s p

For integrally closed rings, the minimal polynomial divides any polynomial that has the integral element as root. See also minpoly.dvd which relaxes the assumptions on S in exchange for stronger assumptions on R.

theorem minpoly.isIntegrallyClosed_dvd_iff {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] [Nontrivial R] {s : S} (hs : IsIntegral R s) (p : Polynomial R) :
↑(Polynomial.aeval s) p = 0 minpoly R s p
theorem minpoly.ker_eval {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {s : S} (hs : IsIntegral R s) :
theorem minpoly.IsIntegrallyClosed.degree_le_of_ne_zero {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {s : S} (hs : IsIntegral R s) {p : Polynomial R} (hp0 : p 0) (hp : ↑(Polynomial.aeval s) p = 0) :

If an element x is a root of a nonzero polynomial p, then the degree of p is at least the degree of the minimal polynomial of x. See also minpoly.degree_le_of_ne_zero which relaxes the assumptions on S in exchange for stronger assumptions on R.

theorem IsIntegrallyClosed.minpoly.unique {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {s : S} {P : Polynomial R} (hmo : Polynomial.Monic P) (hP : ↑(Polynomial.aeval s) P = 0) (Pmin : ∀ (Q : Polynomial R), Polynomial.Monic Q↑(Polynomial.aeval s) Q = 0Polynomial.degree P Polynomial.degree Q) :
P = minpoly R s

The minimal polynomial of an element x is uniquely characterized by its defining property: if there is another monic polynomial of minimal degree that has x as a root, then this polynomial is equal to the minimal polynomial of x. See also minpoly.unique which relaxes the assumptions on S in exchange for stronger assumptions on R.

theorem minpoly.prime_of_isIntegrallyClosed {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (hx : IsIntegral R x) :
@[simp]
theorem minpoly.equivAdjoin_apply {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (hx : IsIntegral R x) :
∀ (a : AdjoinRoot (minpoly R x)), ↑(minpoly.equivAdjoin hx) a = ↑(QuotientAddGroup.lift (Submodule.toAddSubgroup (Ideal.span {minpoly R x})) ↑(Polynomial.eval₂RingHom (algebraMap R { x // x Algebra.adjoin R {x} }) { val := x, property := (_ : x Algebra.adjoin R {x}) }) (_ : ∀ (g : Polynomial R), g Ideal.span {minpoly R x}↑(Polynomial.eval₂RingHom (algebraMap R { x // x Algebra.adjoin R {x} }) { val := x, property := (_ : x Algebra.adjoin R {x}) }) g = 0)) a
def minpoly.equivAdjoin {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (hx : IsIntegral R x) :
AdjoinRoot (minpoly R x) ≃ₐ[R] { x // x Algebra.adjoin R {x} }

The algebra isomorphism AdjoinRoot (minpoly R x) ≃ₐ[R] adjoin R x

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def Algebra.adjoin.powerBasis' {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (hx : IsIntegral R x) :
    PowerBasis R { x // x Algebra.adjoin R {x} }

    The PowerBasis of adjoin R {x} given by x. See Algebra.adjoin.powerBasis for a version over a field.

    Equations
    Instances For
      @[simp]
      theorem Algebra.adjoin.powerBasis'_gen {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (hx : IsIntegral R x) :
      (Algebra.adjoin.powerBasis' hx).gen = { val := x, property := (_ : x Algebra.adjoin R {x}) }
      noncomputable def PowerBasis.ofGenMemAdjoin' {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (B : PowerBasis R S) (hint : IsIntegral R x) (hx : B.gen Algebra.adjoin R {x}) :

      The power basis given by x if B.gen ∈ adjoin R {x}.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem PowerBasis.ofGenMemAdjoin'_dim {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (B : PowerBasis R S) (hint : IsIntegral R x) (hx : B.gen Algebra.adjoin R {x}) :
        @[simp]
        theorem PowerBasis.ofGenMemAdjoin'_gen {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [IsDomain R] [Algebra R S] [IsDomain S] [NoZeroSMulDivisors R S] [IsIntegrallyClosed R] {x : S} (B : PowerBasis R S) (hint : IsIntegral R x) (hx : B.gen Algebra.adjoin R {x}) :
        (PowerBasis.ofGenMemAdjoin' B hint hx).gen = x