Extra lemmas about ULift
and PLift
#
In this file we provide Subsingleton
, Unique
, DecidableEq
, and isEmpty
instances for
ULift α
and PLift α
. We also prove ULift.forall
, ULift.exists
, PLift.forall
, and
PLift.exists
.
Equations
- PLift.instUniquePLift = Equiv.unique Equiv.plift
Equations
- PLift.instDecidableEqPLift = Equiv.decidableEq Equiv.plift
Equations
- ULift.instUniqueULift = Equiv.unique Equiv.ulift
Equations
- ULift.instDecidableEqULift = Equiv.decidableEq Equiv.ulift
@[simp]
theorem
ULift.forall
{α : Type u}
{p : ULift.{u_1, u} α → Prop}
:
((x : ULift.{u_1, u} α) → p x) ↔ (x : α) → p { down := x }
@[simp]
theorem
ULift.ext
{α : Type u}
(x : ULift.{u_1, u} α)
(y : ULift.{u_1, u} α)
(h : x.down = y.down)
:
x = y