Documentation

Mathlib.Data.Set.Sigma

Sets in sigma types #

This file defines Set.sigma, the indexed sum of sets.

@[simp]
theorem Set.range_sigmaMk {ι : Type u_1} {α : ιType u_3} (i : ι) :
Set.range (Sigma.mk i) = Sigma.fst ⁻¹' {i}
theorem Set.preimage_image_sigmaMk_of_ne {ι : Type u_1} {α : ιType u_3} {i : ι} {j : ι} (h : i j) (s : Set (α j)) :
theorem Set.image_sigmaMk_preimage_sigmaMap_subset {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} {β : ι'Type u_5} (f : ιι') (g : (i : ι) → α iβ (f i)) (i : ι) (s : Set (β (f i))) :
Sigma.mk i '' (g i ⁻¹' s) Sigma.map f g ⁻¹' (Sigma.mk (f i) '' s)
theorem Set.image_sigmaMk_preimage_sigmaMap {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} {β : ι'Type u_5} {f : ιι'} (hf : Function.Injective f) (g : (i : ι) → α iβ (f i)) (i : ι) (s : Set (β (f i))) :
Sigma.mk i '' (g i ⁻¹' s) = Sigma.map f g ⁻¹' (Sigma.mk (f i) '' s)
def Set.Sigma {ι : Type u_1} {α : ιType u_3} (s : Set ι) (t : (i : ι) → Set (α i)) :
Set ((i : ι) × α i)

Indexed sum of sets. s.sigma t is the set of dependent pairs ⟨i, a⟩ such that i ∈ s and a ∈ t i.

Equations
Instances For
    @[simp]
    theorem Set.mem_sigma_iff {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {x : (i : ι) × α i} :
    x Set.Sigma s t x.fst s x.snd t x.fst
    theorem Set.mk_sigma_iff {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} {a : α i} :
    { fst := i, snd := a } Set.Sigma s t i s a t i
    theorem Set.mk_mem_sigma {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} {a : α i} (hi : i s) (ha : a t i) :
    { fst := i, snd := a } Set.Sigma s t
    theorem Set.sigma_mono {ι : Type u_1} {α : ιType u_3} {s₁ : Set ι} {s₂ : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} (hs : s₁ s₂) (ht : ∀ (i : ι), t₁ i t₂ i) :
    Set.Sigma s₁ t₁ Set.Sigma s₂ t₂
    theorem Set.sigma_subset_iff {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {u : Set ((i : ι) × α i)} :
    Set.Sigma s t u ∀ ⦃i : ι⦄, i s∀ ⦃a : α i⦄, a t i{ fst := i, snd := a } u
    theorem Set.forall_sigma_iff {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {p : (i : ι) × α iProp} :
    ((x : (i : ι) × α i) → x Set.Sigma s tp x) i : ι⦄ → i sa : α i⦄ → a t ip { fst := i, snd := a }
    theorem Set.exists_sigma_iff {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {p : (i : ι) × α iProp} :
    (x, x Set.Sigma s t p x) i, i s a, a t i p { fst := i, snd := a }
    @[simp]
    theorem Set.sigma_empty {ι : Type u_1} {α : ιType u_3} {s : Set ι} :
    (Set.Sigma s fun i => ) =
    @[simp]
    theorem Set.empty_sigma {ι : Type u_1} {α : ιType u_3} {t : (i : ι) → Set (α i)} :
    theorem Set.univ_sigma_univ {ι : Type u_1} {α : ιType u_3} {i : ι} :
    (Set.Sigma Set.univ fun x => Set.univ) = Set.univ
    @[simp]
    theorem Set.sigma_univ {ι : Type u_1} {α : ιType u_3} {s : Set ι} :
    (Set.Sigma s fun x => Set.univ) = Sigma.fst ⁻¹' s
    @[simp]
    theorem Set.singleton_sigma {ι : Type u_1} {α : ιType u_3} {t : (i : ι) → Set (α i)} {i : ι} {a : α i} :
    Set.Sigma {i} t = Sigma.mk i '' t i
    @[simp]
    theorem Set.sigma_singleton {ι : Type u_1} {α : ιType u_3} {s : Set ι} {a : (i : ι) → α i} :
    (Set.Sigma s fun i => {a i}) = (fun i => { fst := i, snd := a i }) '' s
    theorem Set.singleton_sigma_singleton {ι : Type u_1} {α : ιType u_3} {i : ι} {a : (i : ι) → α i} :
    (Set.Sigma {i} fun i => {a i}) = {{ fst := i, snd := a i }}
    @[simp]
    theorem Set.union_sigma {ι : Type u_1} {α : ιType u_3} {s₁ : Set ι} {s₂ : Set ι} {t : (i : ι) → Set (α i)} :
    Set.Sigma (s₁ s₂) t = Set.Sigma s₁ t Set.Sigma s₂ t
    @[simp]
    theorem Set.sigma_union {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} :
    (Set.Sigma s fun i => t₁ i t₂ i) = Set.Sigma s t₁ Set.Sigma s t₂
    theorem Set.sigma_inter_sigma {ι : Type u_1} {α : ιType u_3} {s₁ : Set ι} {s₂ : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} :
    Set.Sigma s₁ t₁ Set.Sigma s₂ t₂ = Set.Sigma (s₁ s₂) fun i => t₁ i t₂ i
    theorem Set.insert_sigma {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} {a : α i} :
    theorem Set.sigma_insert {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {a : (i : ι) → α i} :
    (Set.Sigma s fun i => insert (a i) (t i)) = (fun i => { fst := i, snd := a i }) '' s Set.Sigma s t
    theorem Set.sigma_preimage_eq {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} {β : ιType u_4} {s : Set ι} {t : (i : ι) → Set (α i)} {f : ι'ι} {g : (i : ι) → β iα i} :
    (Set.Sigma (f ⁻¹' s) fun i => g (f i) ⁻¹' t (f i)) = (fun p => { fst := f p.fst, snd := g (f p.fst) p.snd }) ⁻¹' Set.Sigma s t
    theorem Set.sigma_preimage_left {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {f : ι'ι} :
    (Set.Sigma (f ⁻¹' s) fun i => t (f i)) = (fun p => { fst := f p.fst, snd := p.snd }) ⁻¹' Set.Sigma s t
    theorem Set.sigma_preimage_right {ι : Type u_1} {α : ιType u_3} {β : ιType u_4} {s : Set ι} {t : (i : ι) → Set (α i)} {g : (i : ι) → β iα i} :
    (Set.Sigma s fun i => g i ⁻¹' t i) = (fun p => { fst := p.fst, snd := g p.fst p.snd }) ⁻¹' Set.Sigma s t
    theorem Set.preimage_sigmaMap_sigma {ι : Type u_1} {ι' : Type u_2} {α : ιType u_3} {α' : ι'Type u_5} (f : ιι') (g : (i : ι) → α iα' (f i)) (s : Set ι') (t : (i : ι') → Set (α' i)) :
    Sigma.map f g ⁻¹' Set.Sigma s t = Set.Sigma (f ⁻¹' s) fun i => g i ⁻¹' t (f i)
    @[simp]
    theorem Set.mk_preimage_sigma {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} (hi : i s) :
    @[simp]
    theorem Set.mk_preimage_sigma_eq_empty {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} (hi : ¬i s) :
    theorem Set.mk_preimage_sigma_eq_if {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} [DecidablePred fun x => x s] :
    Sigma.mk i ⁻¹' Set.Sigma s t = if i s then t i else
    theorem Set.mk_preimage_sigma_fn_eq_if {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} {β : Type u_5} [DecidablePred fun x => x s] (g : βα i) :
    (fun b => { fst := i, snd := g b }) ⁻¹' Set.Sigma s t = if i s then g ⁻¹' t i else
    theorem Set.sigma_univ_range_eq {ι : Type u_1} {α : ιType u_3} {β : ιType u_4} {f : (i : ι) → α iβ i} :
    (Set.Sigma Set.univ fun i => Set.range (f i)) = Set.range fun x => { fst := x.fst, snd := f x.fst x.snd }
    theorem Set.Nonempty.sigma {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} :
    Set.Nonempty s(∀ (i : ι), Set.Nonempty (t i)) → Set.Nonempty (Set.Sigma s t)
    theorem Set.Nonempty.sigma_fst {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} :
    theorem Set.Nonempty.sigma_snd {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} :
    Set.Nonempty (Set.Sigma s t)i, i s Set.Nonempty (t i)
    theorem Set.sigma_nonempty_iff {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} :
    Set.Nonempty (Set.Sigma s t) i, i s Set.Nonempty (t i)
    theorem Set.sigma_eq_empty_iff {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} :
    Set.Sigma s t = ∀ (i : ι), i st i =
    theorem Set.image_sigmaMk_subset_sigma_left {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {a : (i : ι) → α i} (ha : ∀ (i : ι), a i t i) :
    (fun i => { fst := i, snd := a i }) '' s Set.Sigma s t
    theorem Set.image_sigmaMk_subset_sigma_right {ι : Type u_1} {α : ιType u_3} {s : Set ι} {t : (i : ι) → Set (α i)} {i : ι} (hi : i s) :
    theorem Set.sigma_subset_preimage_fst {ι : Type u_1} {α : ιType u_3} (s : Set ι) (t : (i : ι) → Set (α i)) :
    Set.Sigma s t Sigma.fst ⁻¹' s
    theorem Set.fst_image_sigma_subset {ι : Type u_1} {α : ιType u_3} (s : Set ι) (t : (i : ι) → Set (α i)) :
    Sigma.fst '' Set.Sigma s t s
    theorem Set.fst_image_sigma {ι : Type u_1} {α : ιType u_3} {t : (i : ι) → Set (α i)} (s : Set ι) (ht : ∀ (i : ι), Set.Nonempty (t i)) :
    Sigma.fst '' Set.Sigma s t = s
    theorem Set.sigma_diff_sigma {ι : Type u_1} {α : ιType u_3} {s₁ : Set ι} {s₂ : Set ι} {t₁ : (i : ι) → Set (α i)} {t₂ : (i : ι) → Set (α i)} :
    Set.Sigma s₁ t₁ \ Set.Sigma s₂ t₂ = Set.Sigma s₁ (t₁ \ t₂) Set.Sigma (s₁ \ s₂) t₁