Further lemmas for the Rational Numbers #
theorem
Rat.den_mk
(n : ℤ)
(d : ℤ)
:
(Rat.divInt n d).den = if d = 0 then 1 else Int.natAbs d / Int.gcd n d
theorem
Rat.num_div_eq_of_coprime
{a : ℤ}
{b : ℤ}
(hb0 : 0 < b)
(h : Nat.Coprime (Int.natAbs a) (Int.natAbs b))
:
theorem
Rat.den_div_eq_of_coprime
{a : ℤ}
{b : ℤ}
(hb0 : 0 < b)
(h : Nat.Coprime (Int.natAbs a) (Int.natAbs b))
:
theorem
Rat.div_int_inj
{a : ℤ}
{b : ℤ}
{c : ℤ}
{d : ℤ}
(hb0 : 0 < b)
(hd0 : 0 < d)
(h1 : Nat.Coprime (Int.natAbs a) (Int.natAbs b))
(h2 : Nat.Coprime (Int.natAbs c) (Int.natAbs d))
(h : ↑a / ↑b = ↑c / ↑d)
:
Denominator as ℕ+
#
Denominator as ℕ+
.
Equations
- Rat.pnatDen x = { val := x.den, property := (_ : 0 < x.den) }