Prime numbers #
This file contains some results about prime numbers which depend on finiteness of sets.
A version of Nat.exists_infinite_primes
using the Set.Infinite
predicate.
theorem
Nat.factors_mul_toFinset
{a : ℕ}
{b : ℕ}
(ha : a ≠ 0)
(hb : b ≠ 0)
:
List.toFinset (Nat.factors (a * b)) = List.toFinset (Nat.factors a) ∪ List.toFinset (Nat.factors b)
If a
, b
are positive, the prime divisors of a * b
are the union of those of a
and b
theorem
Nat.pow_succ_factors_toFinset
(n : ℕ)
(k : ℕ)
:
List.toFinset (Nat.factors (n ^ (k + 1))) = List.toFinset (Nat.factors n)
theorem
Nat.pow_factors_toFinset
(n : ℕ)
{k : ℕ}
(hk : k ≠ 0)
:
List.toFinset (Nat.factors (n ^ k)) = List.toFinset (Nat.factors n)
theorem
Nat.prime_pow_prime_divisor
{p : ℕ}
{k : ℕ}
(hk : k ≠ 0)
(hp : Nat.Prime p)
:
List.toFinset (Nat.factors (p ^ k)) = {p}
The only prime divisor of positive prime power p^k
is p
itself
theorem
Nat.factors_mul_toFinset_of_coprime
{a : ℕ}
{b : ℕ}
(hab : Nat.Coprime a b)
:
List.toFinset (Nat.factors (a * b)) = List.toFinset (Nat.factors a) ∪ List.toFinset (Nat.factors b)