Documentation

Mathlib.Data.Nat.Factorization.PrimePow

Prime powers and factorizations #

This file deals with factorizations of prime powers.

theorem isPrimePow_iff_factorization_eq_single {n : } :
IsPrimePow n p k, 0 < k Nat.factorization n = fun₀ | p => k

An equivalent definition for prime powers: n is a prime power iff there is a unique prime dividing it.

theorem isPrimePow_pow_iff {n : } {k : } (hk : k 0) :
theorem Nat.Coprime.isPrimePow_dvd_mul {n : } {a : } {b : } (hab : Nat.Coprime a b) (hn : IsPrimePow n) :
n a * b n a n b