Documentation

Mathlib.Data.List.Prime

Products of lists of prime elements. #

This file contains some theorems relating Prime and products of Lists.

theorem Prime.dvd_prod_iff {M : Type u_1} [CommMonoidWithZero M] {p : M} {L : List M} (pp : Prime p) :
p List.prod L a, a L p a

Prime p divides the product of a list L iff it divides some a ∈ L

theorem Prime.not_dvd_prod {M : Type u_1} [CommMonoidWithZero M] {p : M} {L : List M} (pp : Prime p) (hL : ∀ (a : M), a L¬p a) :
theorem mem_list_primes_of_dvd_prod {M : Type u_1} [CancelCommMonoidWithZero M] [Unique Mˣ] {p : M} (hp : Prime p) {L : List M} (hL : ∀ (q : M), q LPrime q) (hpL : p List.prod L) :
p L
theorem perm_of_prod_eq_prod {M : Type u_1} [CancelCommMonoidWithZero M] [Unique Mˣ] {l₁ : List M} {l₂ : List M} :
List.prod l₁ = List.prod l₂(∀ (p : M), p l₁Prime p) → (∀ (p : M), p l₂Prime p) → l₁ ~ l₂