Documentation

Mathlib.CategoryTheory.Opposites

Opposite categories #

We provide a category instance on Cᵒᵖ. The morphisms X ⟶ Y are defined to be the morphisms unop Y ⟶ unop X in C.

Here Cᵒᵖ is an irreducible typeclass synonym for C (it is the same one used in the algebra library).

We also provide various mechanisms for constructing opposite morphisms, functors, and natural transformations.

Unfortunately, because we do not have a definitional equality op (op X) = X, there are quite a few variations that are needed in practice.

theorem Quiver.Hom.op_inj {C : Type u₁} [Quiver C] {X : C} {Y : C} :
Function.Injective Quiver.Hom.op
theorem Quiver.Hom.unop_inj {C : Type u₁} [Quiver C] {X : Cᵒᵖ} {Y : Cᵒᵖ} :
Function.Injective Quiver.Hom.unop
@[simp]
theorem Quiver.Hom.unop_op {C : Type u₁} [Quiver C] {X : C} {Y : C} (f : X Y) :
f.op.unop = f
@[simp]
theorem Quiver.Hom.op_unop {C : Type u₁} [Quiver C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
f.unop.op = f

The opposite category.

See https://stacks.math.columbia.edu/tag/001M.

Equations
  • CategoryTheory.Category.opposite = CategoryTheory.Category.mk
@[simp]
theorem CategoryTheory.op_comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : Y Z} :
@[simp]
theorem CategoryTheory.unopUnop_map (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] :
∀ {X Y : Cᵒᵖᵒᵖ} (f : X Y), (CategoryTheory.unopUnop C).map f = f.unop.unop

The functor from the double-opposite of a category to the underlying category.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.opOp_map (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] :
    ∀ {X Y : C} (f : X Y), (CategoryTheory.opOp C).map f = f.op.op

    The functor from a category to its double-opposite.

    Equations
    Instances For

      The double opposite category is equivalent to the original.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        If f.op is an isomorphism f must be too. (This cannot be an instance as it would immediately loop!)

        @[simp]
        theorem CategoryTheory.Functor.op_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) :
        ∀ {X Y : Cᵒᵖ} (f : X Y), F.op.map f = (F.map f.unop).op

        The opposite of a functor, i.e. considering a functor F : C ⥤ D as a functor Cᵒᵖ ⥤ Dᵒᵖ. In informal mathematics no distinction is made between these.

        Equations
        Instances For

        Given a functor F : Cᵒᵖ ⥤ Dᵒᵖ we can take the "unopposite" functor F : C ⥤ D. In informal mathematics no distinction is made between these.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.opHom_map_app (C : Type u₁) [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] :
          ∀ {X Y : (CategoryTheory.Functor C D)ᵒᵖ} (α : X Y) (X_1 : Cᵒᵖ), ((CategoryTheory.Functor.opHom C D).map α).app X_1 = (α.unop.app X_1.unop).op

          Taking the opposite of a functor is functorial.

          Equations
          Instances For

            Take the "unopposite" of a functor is functorial.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              @[simp]
              theorem CategoryTheory.Functor.leftOp_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C Dᵒᵖ) :
              ∀ {X Y : Cᵒᵖ} (f : X Y), F.leftOp.map f = (F.map f.unop).unop

              Another variant of the opposite of functor, turning a functor C ⥤ Dᵒᵖ into a functor Cᵒᵖ ⥤ D. In informal mathematics no distinction is made.

              Equations
              Instances For
              @[simp]
              theorem CategoryTheory.Functor.rightOp_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor Cᵒᵖ D) :
              ∀ {X Y : C} (f : X Y), F.rightOp.map f = (F.map f.op).op

              Another variant of the opposite of functor, turning a functor Cᵒᵖ ⥤ D into a functor C ⥤ Dᵒᵖ. In informal mathematics no distinction is made.

              Equations
              Instances For
              Equations
              • CategoryTheory.Functor.instFullOppositeOppositeOppositeOppositeOp = CategoryTheory.Full.mk fun X Y f => (F.preimage f.unop).op

              Whenever possible, it is advisable to use the isomorphism rightOpLeftOpIso instead of this equality of functors.

              The opposite of a natural transformation.

              Equations
              Instances For

                Given a natural transformation α : F.op ⟶ G.op, we can take the "unopposite" of each component obtaining a natural transformation G ⟶ F.

                Equations
                Instances For

                  Given a natural transformation α : F.unop ⟶ G.unop, we can take the opposite of each component obtaining a natural transformation G ⟶ F.

                  Equations
                  Instances For

                    Given a natural transformation α : F ⟶ G, for F G : C ⥤ Dᵒᵖ, taking unop of each component gives a natural transformation G.leftOp ⟶ F.leftOp.

                    Equations
                    Instances For

                      Given a natural transformation α : F.leftOp ⟶ G.leftOp, for F G : C ⥤ Dᵒᵖ, taking op of each component gives a natural transformation G ⟶ F.

                      Equations
                      Instances For

                        Given a natural transformation α : F ⟶ G, for F G : Cᵒᵖ ⥤ D, taking op of each component gives a natural transformation G.rightOp ⟶ F.rightOp.

                        Equations
                        Instances For

                          Given a natural transformation α : F.rightOp ⟶ G.rightOp, for F G : Cᵒᵖ ⥤ D, taking unop of each component gives a natural transformation G ⟶ F.

                          Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.Iso.op_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (α : X Y) :
                            (CategoryTheory.Iso.op α).inv = α.inv.op
                            @[simp]
                            theorem CategoryTheory.Iso.op_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} (α : X Y) :
                            (CategoryTheory.Iso.op α).hom = α.hom.op

                            The opposite isomorphism.

                            Equations
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Iso.unop_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
                              (CategoryTheory.Iso.unop f).inv = f.inv.unop
                              @[simp]
                              theorem CategoryTheory.Iso.unop_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
                              (CategoryTheory.Iso.unop f).hom = f.hom.unop
                              def CategoryTheory.Iso.unop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : Cᵒᵖ} {Y : Cᵒᵖ} (f : X Y) :
                              Y.unop X.unop

                              The isomorphism obtained from an isomorphism in the opposite category.

                              Equations
                              Instances For

                                The natural isomorphism between opposite functors G.op ≅ F.op induced by a natural isomorphism between the original functors F ≅ G.

                                Equations
                                Instances For

                                  The natural isomorphism between functors G ≅ F induced by a natural isomorphism between the opposite functors F.op ≅ G.op.

                                  Equations
                                  Instances For

                                    The natural isomorphism between functors G.unop ≅ F.unop induced by a natural isomorphism between the original functors F ≅ G.

                                    Equations
                                    Instances For

                                      An equivalence between categories gives an equivalence between the opposite categories.

                                      Equations
                                      Instances For

                                        An equivalence between opposite categories gives an equivalence between the original categories.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.opEquiv_apply {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (A : Cᵒᵖ) (B : Cᵒᵖ) (f : A B) :
                                          ↑(CategoryTheory.opEquiv A B) f = f.unop
                                          @[simp]
                                          theorem CategoryTheory.opEquiv_symm_apply {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (A : Cᵒᵖ) (B : Cᵒᵖ) (g : B.unop A.unop) :
                                          (CategoryTheory.opEquiv A B).symm g = g.op
                                          def CategoryTheory.opEquiv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (A : Cᵒᵖ) (B : Cᵒᵖ) :
                                          (A B) (B.unop A.unop)

                                          The equivalence between arrows of the form A ⟶ B and B.unop ⟶ A.unop. Useful for building adjunctions. Note that this (definitionally) gives variants

                                          def opEquiv' (A : C) (B : Cᵒᵖ) : (Opposite.op A ⟶ B) ≃ (B.unop ⟶ A) :=
                                            opEquiv _ _
                                          
                                          def opEquiv'' (A : Cᵒᵖ) (B : C) : (A ⟶ Opposite.op B) ≃ (B ⟶ A.unop) :=
                                            opEquiv _ _
                                          
                                          def opEquiv''' (A B : C) : (Opposite.op A ⟶ Opposite.op B) ≃ (B ⟶ A) :=
                                            opEquiv _ _
                                          
                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            def CategoryTheory.isoOpEquiv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (A : Cᵒᵖ) (B : Cᵒᵖ) :
                                            (A B) (B.unop A.unop)

                                            The equivalence between isomorphisms of the form A ≅ B and B.unop ≅ A.unop.

                                            Note this is definitionally the same as the other three variants:

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              The equivalence of functor categories induced by op and unop.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                The equivalence of functor categories induced by leftOp and rightOp.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For