The hom functor, sending (X, Y)
to the type X ⟶ Y
.
@[simp]
theorem
CategoryTheory.Functor.hom_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
∀ {X Y : Cᵒᵖ × C} (f : X ⟶ Y) (h : X.fst.unop ⟶ X.snd),
(Cᵒᵖ × C).map CategoryTheory.CategoryStruct.toQuiver (Type v) CategoryTheory.CategoryStruct.toQuiver
(CategoryTheory.Functor.hom C).toPrefunctor X Y f h = CategoryTheory.CategoryStruct.comp f.fst.unop (CategoryTheory.CategoryStruct.comp h f.snd)
@[simp]
theorem
CategoryTheory.Functor.hom_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(p : Cᵒᵖ × C)
:
(CategoryTheory.Functor.hom C).obj p = (p.fst.unop ⟶ p.snd)
def
CategoryTheory.Functor.hom
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
CategoryTheory.Functor (Cᵒᵖ × C) (Type v)
Functor.hom
is the hom-pairing, sending (X, Y)
to X ⟶ Y
, contravariant in X
and
covariant in Y
.
Equations
- One or more equations did not get rendered due to their size.