Ordered normed spaces #
In this file, we define classes for fields and groups that are both normed and ordered. These are mostly useful to avoid diamonds during type class inference.
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.ofNat (Nat.succ n)) a = a + SubNegMonoid.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑(Nat.succ n)) a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- norm : α → ℝ
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ) (_ : ε > 0), Filter.principal {p | dist p.fst p.snd < ε}
- toBornology : Bornology α
The distance function is induced by the norm.
A NormedOrderedAddGroup
is an additive group that is both a NormedAddCommGroup
and an
OrderedAddCommGroup
. This class is necessary to avoid diamonds caused by both classes
carrying their own group structure.
Instances
- mul : α → α → α
- one : α
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Monoid.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Monoid.npow (n + 1) x = x * Monoid.npow n x
- inv : α → α
- div : α → α → α
- zpow : ℤ → α → α
- zpow_zero' : ∀ (a : α), DivInvMonoid.zpow 0 a = 1
- zpow_succ' : ∀ (n : ℕ) (a : α), DivInvMonoid.zpow (Int.ofNat (Nat.succ n)) a = a * DivInvMonoid.zpow (Int.ofNat n) a
- zpow_neg' : ∀ (n : ℕ) (a : α), DivInvMonoid.zpow (Int.negSucc n) a = (DivInvMonoid.zpow (↑(Nat.succ n)) a)⁻¹
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- norm : α → ℝ
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ) (_ : ε > 0), Filter.principal {p | dist p.fst p.snd < ε}
- toBornology : Bornology α
The distance function is induced by the norm.
A NormedOrderedGroup
is a group that is both a NormedCommGroup
and an
OrderedCommGroup
. This class is necessary to avoid diamonds caused by both classes
carrying their own group structure.
Instances
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.ofNat (Nat.succ n)) a = a + SubNegMonoid.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑(Nat.succ n)) a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
- decidableLE : DecidableRel fun x x_1 => x ≤ x_1
- decidableEq : DecidableEq α
- decidableLT : DecidableRel fun x x_1 => x < x_1
- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
- norm : α → ℝ
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ) (_ : ε > 0), Filter.principal {p | dist p.fst p.snd < ε}
- toBornology : Bornology α
The distance function is induced by the norm.
A NormedLinearOrderedAddGroup
is an additive group that is both a NormedAddCommGroup
and a LinearOrderedAddCommGroup
. This class is necessary to avoid diamonds caused by both
classes carrying their own group structure.
Instances
- mul : α → α → α
- one : α
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Monoid.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Monoid.npow (n + 1) x = x * Monoid.npow n x
- inv : α → α
- div : α → α → α
- zpow : ℤ → α → α
- zpow_zero' : ∀ (a : α), DivInvMonoid.zpow 0 a = 1
- zpow_succ' : ∀ (n : ℕ) (a : α), DivInvMonoid.zpow (Int.ofNat (Nat.succ n)) a = a * DivInvMonoid.zpow (Int.ofNat n) a
- zpow_neg' : ∀ (n : ℕ) (a : α), DivInvMonoid.zpow (Int.negSucc n) a = (DivInvMonoid.zpow (↑(Nat.succ n)) a)⁻¹
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
- decidableLE : DecidableRel fun x x_1 => x ≤ x_1
- decidableEq : DecidableEq α
- decidableLT : DecidableRel fun x x_1 => x < x_1
- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
- norm : α → ℝ
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ) (_ : ε > 0), Filter.principal {p | dist p.fst p.snd < ε}
- toBornology : Bornology α
The distance function is induced by the norm.
A NormedLinearOrderedGroup
is a group that is both a NormedCommGroup
and a
LinearOrderedCommGroup
. This class is necessary to avoid diamonds caused by both classes
carrying their own group structure.
Instances
- add : α → α → α
- zero : α
- nsmul : ℕ → α → α
- nsmul_zero : ∀ (x : α), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : α), AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
- mul : α → α → α
- one : α
- natCast : ℕ → α
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow : ℕ → α → α
- npow_zero : ∀ (x : α), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : α), Semiring.npow (n + 1) x = x * Semiring.npow n x
- neg : α → α
- sub : α → α → α
- zsmul : ℤ → α → α
- zsmul_zero' : ∀ (a : α), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.ofNat (Nat.succ n)) a = a + Ring.zsmul (Int.ofNat n) a
- zsmul_neg' : ∀ (n : ℕ) (a : α), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑(Nat.succ n)) a
- intCast : ℤ → α
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- exists_pair_ne : ∃ x y, x ≠ y
- zero_le_one : 0 ≤ 1
- min : α → α → α
- max : α → α → α
- compare : α → α → Ordering
- decidableLE : DecidableRel fun x x_1 => x ≤ x_1
- decidableEq : DecidableEq α
- decidableLT : DecidableRel fun x x_1 => x < x_1
- compare_eq_compareOfLessAndEq : ∀ (a b : α), compare a b = compareOfLessAndEq a b
- inv : α → α
- div : α → α → α
- zpow : ℤ → α → α
- zpow_zero' : ∀ (a : α), LinearOrderedField.zpow 0 a = 1
- zpow_succ' : ∀ (n : ℕ) (a : α), LinearOrderedField.zpow (Int.ofNat (Nat.succ n)) a = a * LinearOrderedField.zpow (Int.ofNat n) a
- zpow_neg' : ∀ (n : ℕ) (a : α), LinearOrderedField.zpow (Int.negSucc n) a = (LinearOrderedField.zpow (↑(Nat.succ n)) a)⁻¹
- ratCast : ℚ → α
- ratCast_mk : ∀ (a : ℤ) (b : ℕ) (h1 : b ≠ 0) (h2 : Nat.Coprime (Int.natAbs a) b), ↑(Rat.mk' a b) = ↑a * (↑b)⁻¹
- qsmul : ℚ → α → α
- qsmul_eq_mul' : ∀ (a : ℚ) (x : α), LinearOrderedField.qsmul a x = ↑a * x
- norm : α → ℝ
- dist : α → α → ℝ
- edist : α → α → ENNReal
- edist_dist : ∀ (x y : α), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- toUniformSpace : UniformSpace α
- uniformity_dist : uniformity α = ⨅ (ε : ℝ) (_ : ε > 0), Filter.principal {p | dist p.fst p.snd < ε}
- toBornology : Bornology α
The distance function is induced by the norm.
The norm is multiplicative.
A NormedLinearOrderedField
is a field that is both a NormedField
and a
LinearOrderedField
. This class is necessary to avoid diamonds.
Instances
Equations
- NormedOrderedAddGroup.toNormedAddCommGroup = NormedAddCommGroup.mk
Equations
- NormedOrderedGroup.toNormedCommGroup = NormedCommGroup.mk
Equations
- NormedLinearOrderedAddGroup.toNormedOrderedAddGroup = NormedOrderedAddGroup.mk
Equations
- NormedLinearOrderedGroup.toNormedOrderedGroup = NormedOrderedGroup.mk
Equations
- OrderDual.normedOrderedAddGroup = let src := NormedOrderedAddGroup.toNormedAddCommGroup; let src_1 := OrderDual.orderedAddCommGroup; NormedOrderedAddGroup.mk
Equations
- OrderDual.normedOrderedGroup = let src := NormedOrderedGroup.toNormedCommGroup; let src_1 := OrderDual.orderedCommGroup; NormedOrderedGroup.mk
Equations
- OrderDual.normedLinearOrderedAddGroup = let src := OrderDual.normedOrderedAddGroup; let src_1 := OrderDual.instLinearOrder α; NormedLinearOrderedAddGroup.mk
Equations
- OrderDual.normedLinearOrderedGroup = let src := OrderDual.normedOrderedGroup; let src_1 := OrderDual.instLinearOrder α; NormedLinearOrderedGroup.mk
Equations
- Additive.normedOrderedAddGroup = let src := Additive.normedAddCommGroup; let src_1 := Additive.orderedAddCommGroup; NormedOrderedAddGroup.mk
Equations
- Multiplicative.normedOrderedGroup = let src := Multiplicative.normedCommGroup; let src_1 := Multiplicative.orderedCommGroup; NormedOrderedGroup.mk
Equations
- Additive.normedLinearOrderedAddGroup = let src := Additive.normedAddCommGroup; let src_1 := Additive.linearOrderedAddCommGroup; NormedLinearOrderedAddGroup.mk
Equations
- Multiplicative.normedlinearOrderedGroup = let src := Multiplicative.normedCommGroup; let src_1 := Multiplicative.linearOrderedCommGroup; NormedLinearOrderedGroup.mk