Completion of a normed group #
In this file we prove that the completion of a (semi)normed group is a normed group.
Tags #
normed group, completion
Equations
- UniformSpace.Completion.instNormCompletion E = { norm := UniformSpace.Completion.extension norm }
@[simp]
instance
UniformSpace.Completion.instNormedAddCommGroupCompletionToUniformSpaceToPseudoMetricSpace
(E : Type u_1)
[SeminormedAddCommGroup E]
:
Equations
- UniformSpace.Completion.instNormedAddCommGroupCompletionToUniformSpaceToPseudoMetricSpace E = NormedAddCommGroup.mk