Documentation

Mathlib.Algebra.Order.Ring.Abs

Absolute values in linear ordered rings. #

@[simp]
theorem abs_one {α : Type u_1} [LinearOrderedRing α] :
|1| = 1
@[simp]
theorem abs_two {α : Type u_1} [LinearOrderedRing α] :
|2| = 2
theorem abs_mul {α : Type u_1} [LinearOrderedRing α] (a : α) (b : α) :
|a * b| = |a| * |b|
def absHom {α : Type u_1} [LinearOrderedRing α] :
α →*₀ α

abs as a MonoidWithZeroHom.

Equations
  • absHom = { toZeroHom := { toFun := abs, map_zero' := (_ : |0| = 0) }, map_one' := (_ : |1| = 1), map_mul' := (_ : ∀ (a b : α), |a * b| = |a| * |b|) }
Instances For
    @[simp]
    theorem abs_mul_abs_self {α : Type u_1} [LinearOrderedRing α] (a : α) :
    |a| * |a| = a * a
    @[simp]
    theorem abs_mul_self {α : Type u_1} [LinearOrderedRing α] (a : α) :
    |a * a| = a * a
    @[simp]
    theorem abs_eq_self {α : Type u_1} [LinearOrderedRing α] {a : α} :
    |a| = a 0 a
    @[simp]
    theorem abs_eq_neg_self {α : Type u_1} [LinearOrderedRing α] {a : α} :
    |a| = -a a 0
    theorem abs_cases {α : Type u_1} [LinearOrderedRing α] (a : α) :
    |a| = a 0 a |a| = -a a < 0

    For an element a of a linear ordered ring, either abs a = a and 0 ≤ a, or abs a = -a and a < 0. Use cases on this lemma to automate linarith in inequalities

    @[simp]
    theorem max_zero_add_max_neg_zero_eq_abs_self {α : Type u_1} [LinearOrderedRing α] (a : α) :
    max a 0 + max (-a) 0 = |a|
    theorem abs_eq_iff_mul_self_eq {α : Type u_1} [LinearOrderedRing α] {a : α} {b : α} :
    |a| = |b| a * a = b * b
    theorem abs_lt_iff_mul_self_lt {α : Type u_1} [LinearOrderedRing α] {a : α} {b : α} :
    |a| < |b| a * a < b * b
    theorem abs_le_iff_mul_self_le {α : Type u_1} [LinearOrderedRing α] {a : α} {b : α} :
    |a| |b| a * a b * b
    theorem abs_le_one_iff_mul_self_le_one {α : Type u_1} [LinearOrderedRing α] {a : α} :
    |a| 1 a * a 1
    theorem abs_sub_sq {α : Type u_1} [LinearOrderedCommRing α] (a : α) (b : α) :
    |a - b| * |a - b| = a * a + b * b - (1 + 1) * a * b
    @[simp]
    theorem abs_dvd {α : Type u_1} [Ring α] [LinearOrder α] (a : α) (b : α) :
    |a| b a b
    theorem abs_dvd_self {α : Type u_1} [Ring α] [LinearOrder α] (a : α) :
    |a| a
    @[simp]
    theorem dvd_abs {α : Type u_1} [Ring α] [LinearOrder α] (a : α) (b : α) :
    a |b| a b
    theorem self_dvd_abs {α : Type u_1} [Ring α] [LinearOrder α] (a : α) :
    a |a|
    theorem abs_dvd_abs {α : Type u_1} [Ring α] [LinearOrder α] (a : α) (b : α) :
    |a| |b| a b