Documentation

Mathlib.Algebra.Order.Monoid.Cancel.Basic

Basic results on ordered cancellative monoids. #

We pull back ordered cancellative monoids along injective maps.

theorem Function.Injective.orderedCancelAddCommMonoid.proof_1 {α : Type u_1} [OrderedCancelAddCommMonoid α] {β : Type u_2} [Add β] (f : βα) (mul : ∀ (x y : β), f (x + y) = f x + f y) (a : β) (b : β) (c : β) (bc : f (a + b) f (a + c)) :
f b f c
@[reducible]
def Function.Injective.orderedCancelAddCommMonoid {α : Type u} [OrderedCancelAddCommMonoid α] {β : Type u_1} [Zero β] [Add β] [SMul β] (f : βα) (hf : Function.Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) :

Pullback an OrderedCancelAddCommMonoid under an injective map.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible]
    def Function.Injective.orderedCancelCommMonoid {α : Type u} [OrderedCancelCommMonoid α] {β : Type u_1} [One β] [Mul β] [Pow β ] (f : βα) (hf : Function.Injective f) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) :

    Pullback an OrderedCancelCommMonoid under an injective map. See note [reducible non-instances].

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Function.Injective.linearOrderedCancelAddCommMonoid.proof_1 {α : Type u_2} [LinearOrderedCancelAddCommMonoid α] {β : Type u_1} [Zero β] [Add β] [SMul β] [Sup β] [Inf β] (f : βα) (hf : Function.Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) (hsup : ∀ (x y : β), f (x y) = max (f x) (f y)) (hinf : ∀ (x y : β), f (x y) = min (f x) (f y)) (a : β) (b : β) :
      a b b a
      theorem Function.Injective.linearOrderedCancelAddCommMonoid.proof_4 {α : Type u_2} [LinearOrderedCancelAddCommMonoid α] {β : Type u_1} [Zero β] [Add β] [SMul β] [Sup β] [Inf β] (f : βα) (hf : Function.Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) (hsup : ∀ (x y : β), f (x y) = max (f x) (f y)) (hinf : ∀ (x y : β), f (x y) = min (f x) (f y)) (a : β) (b : β) :
      @[reducible]
      def Function.Injective.linearOrderedCancelAddCommMonoid {α : Type u} [LinearOrderedCancelAddCommMonoid α] {β : Type u_1} [Zero β] [Add β] [SMul β] [Sup β] [Inf β] (f : βα) (hf : Function.Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) (hsup : ∀ (x y : β), f (x y) = max (f x) (f y)) (hinf : ∀ (x y : β), f (x y) = min (f x) (f y)) :

      Pullback a LinearOrderedCancelAddCommMonoid under an injective map.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Function.Injective.linearOrderedCancelAddCommMonoid.proof_3 {α : Type u_2} [LinearOrderedCancelAddCommMonoid α] {β : Type u_1} [Zero β] [Add β] [SMul β] [Sup β] [Inf β] (f : βα) (hf : Function.Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) (hsup : ∀ (x y : β), f (x y) = max (f x) (f y)) (hinf : ∀ (x y : β), f (x y) = min (f x) (f y)) (a : β) (b : β) :
        max a b = if a b then b else a
        theorem Function.Injective.linearOrderedCancelAddCommMonoid.proof_2 {α : Type u_2} [LinearOrderedCancelAddCommMonoid α] {β : Type u_1} [Zero β] [Add β] [SMul β] [Sup β] [Inf β] (f : βα) (hf : Function.Injective f) (one : f 0 = 0) (mul : ∀ (x y : β), f (x + y) = f x + f y) (npow : ∀ (x : β) (n : ), f (n x) = n f x) (hsup : ∀ (x y : β), f (x y) = max (f x) (f y)) (hinf : ∀ (x y : β), f (x y) = min (f x) (f y)) (a : β) (b : β) :
        min a b = if a b then a else b
        @[reducible]
        def Function.Injective.linearOrderedCancelCommMonoid {α : Type u} [LinearOrderedCancelCommMonoid α] {β : Type u_1} [One β] [Mul β] [Pow β ] [Sup β] [Inf β] (f : βα) (hf : Function.Injective f) (one : f 1 = 1) (mul : ∀ (x y : β), f (x * y) = f x * f y) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (hsup : ∀ (x y : β), f (x y) = max (f x) (f y)) (hinf : ∀ (x y : β), f (x y) = min (f x) (f y)) :

        Pullback a LinearOrderedCancelCommMonoid under an injective map. See note [reducible non-instances].

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For