Basic results on ordered cancellative monoids. #
We pull back ordered cancellative monoids along injective maps.
@[reducible]
def
Function.Injective.orderedCancelAddCommMonoid
{α : Type u}
[OrderedCancelAddCommMonoid α]
{β : Type u_1}
[Zero β]
[Add β]
[SMul ℕ β]
(f : β → α)
(hf : Function.Injective f)
(one : f 0 = 0)
(mul : ∀ (x y : β), f (x + y) = f x + f y)
(npow : ∀ (x : β) (n : ℕ), f (n • x) = n • f x)
:
Pullback an OrderedCancelAddCommMonoid
under an injective map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible]
def
Function.Injective.orderedCancelCommMonoid
{α : Type u}
[OrderedCancelCommMonoid α]
{β : Type u_1}
[One β]
[Mul β]
[Pow β ℕ]
(f : β → α)
(hf : Function.Injective f)
(one : f 1 = 1)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
:
Pullback an OrderedCancelCommMonoid
under an injective map.
See note [reducible non-instances].
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Function.Injective.linearOrderedCancelAddCommMonoid.proof_1
{α : Type u_2}
[LinearOrderedCancelAddCommMonoid α]
{β : Type u_1}
[Zero β]
[Add β]
[SMul ℕ β]
[Sup β]
[Inf β]
(f : β → α)
(hf : Function.Injective f)
(one : f 0 = 0)
(mul : ∀ (x y : β), f (x + y) = f x + f y)
(npow : ∀ (x : β) (n : ℕ), f (n • x) = n • f x)
(hsup : ∀ (x y : β), f (x ⊔ y) = max (f x) (f y))
(hinf : ∀ (x y : β), f (x ⊓ y) = min (f x) (f y))
(a : β)
(b : β)
:
theorem
Function.Injective.linearOrderedCancelAddCommMonoid.proof_4
{α : Type u_2}
[LinearOrderedCancelAddCommMonoid α]
{β : Type u_1}
[Zero β]
[Add β]
[SMul ℕ β]
[Sup β]
[Inf β]
(f : β → α)
(hf : Function.Injective f)
(one : f 0 = 0)
(mul : ∀ (x y : β), f (x + y) = f x + f y)
(npow : ∀ (x : β) (n : ℕ), f (n • x) = n • f x)
(hsup : ∀ (x y : β), f (x ⊔ y) = max (f x) (f y))
(hinf : ∀ (x y : β), f (x ⊓ y) = min (f x) (f y))
(a : β)
(b : β)
:
compare a b = compareOfLessAndEq a b
@[reducible]
def
Function.Injective.linearOrderedCancelAddCommMonoid
{α : Type u}
[LinearOrderedCancelAddCommMonoid α]
{β : Type u_1}
[Zero β]
[Add β]
[SMul ℕ β]
[Sup β]
[Inf β]
(f : β → α)
(hf : Function.Injective f)
(one : f 0 = 0)
(mul : ∀ (x y : β), f (x + y) = f x + f y)
(npow : ∀ (x : β) (n : ℕ), f (n • x) = n • f x)
(hsup : ∀ (x y : β), f (x ⊔ y) = max (f x) (f y))
(hinf : ∀ (x y : β), f (x ⊓ y) = min (f x) (f y))
:
Pullback a LinearOrderedCancelAddCommMonoid
under an injective map.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
Function.Injective.linearOrderedCancelAddCommMonoid.proof_3
{α : Type u_2}
[LinearOrderedCancelAddCommMonoid α]
{β : Type u_1}
[Zero β]
[Add β]
[SMul ℕ β]
[Sup β]
[Inf β]
(f : β → α)
(hf : Function.Injective f)
(one : f 0 = 0)
(mul : ∀ (x y : β), f (x + y) = f x + f y)
(npow : ∀ (x : β) (n : ℕ), f (n • x) = n • f x)
(hsup : ∀ (x y : β), f (x ⊔ y) = max (f x) (f y))
(hinf : ∀ (x y : β), f (x ⊓ y) = min (f x) (f y))
(a : β)
(b : β)
:
theorem
Function.Injective.linearOrderedCancelAddCommMonoid.proof_2
{α : Type u_2}
[LinearOrderedCancelAddCommMonoid α]
{β : Type u_1}
[Zero β]
[Add β]
[SMul ℕ β]
[Sup β]
[Inf β]
(f : β → α)
(hf : Function.Injective f)
(one : f 0 = 0)
(mul : ∀ (x y : β), f (x + y) = f x + f y)
(npow : ∀ (x : β) (n : ℕ), f (n • x) = n • f x)
(hsup : ∀ (x y : β), f (x ⊔ y) = max (f x) (f y))
(hinf : ∀ (x y : β), f (x ⊓ y) = min (f x) (f y))
(a : β)
(b : β)
:
@[reducible]
def
Function.Injective.linearOrderedCancelCommMonoid
{α : Type u}
[LinearOrderedCancelCommMonoid α]
{β : Type u_1}
[One β]
[Mul β]
[Pow β ℕ]
[Sup β]
[Inf β]
(f : β → α)
(hf : Function.Injective f)
(one : f 1 = 1)
(mul : ∀ (x y : β), f (x * y) = f x * f y)
(npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n)
(hsup : ∀ (x y : β), f (x ⊔ y) = max (f x) (f y))
(hinf : ∀ (x y : β), f (x ⊓ y) = min (f x) (f y))
:
Pullback a LinearOrderedCancelCommMonoid
under an injective map.
See note [reducible non-instances].
Equations
- One or more equations did not get rendered due to their size.