Documentation
Mathlib
.
Algebra
.
Order
.
Group
.
Bounds
Search
Google site search
Mathlib
.
Algebra
.
Order
.
Group
.
Bounds
source
Imports
Init
Mathlib.Order.Bounds.Basic
Mathlib.Algebra.Order.Group.Defs
Imported by
IsGLB
.
exists_between_self_add
IsGLB
.
exists_between_self_add'
IsLUB
.
exists_between_sub_self
IsLUB
.
exists_between_sub_self'
Least upper bound and the greatest lower bound in linear ordered additive commutative groups
#
source
theorem
IsGLB
.
exists_between_self_add
{α :
Type
u_1}
[
LinearOrderedAddCommGroup
α
]
{s :
Set
α
}
{a :
α
}
{ε :
α
}
(h :
IsGLB
s
a
)
(hε :
0
<
ε
)
:
∃
b
,
b
∈
s
∧
a
≤
b
∧
b
<
a
+
ε
source
theorem
IsGLB
.
exists_between_self_add'
{α :
Type
u_1}
[
LinearOrderedAddCommGroup
α
]
{s :
Set
α
}
{a :
α
}
{ε :
α
}
(h :
IsGLB
s
a
)
(h₂ :
¬
a
∈
s
)
(hε :
0
<
ε
)
:
∃
b
,
b
∈
s
∧
a
<
b
∧
b
<
a
+
ε
source
theorem
IsLUB
.
exists_between_sub_self
{α :
Type
u_1}
[
LinearOrderedAddCommGroup
α
]
{s :
Set
α
}
{a :
α
}
{ε :
α
}
(h :
IsLUB
s
a
)
(hε :
0
<
ε
)
:
∃
b
,
b
∈
s
∧
a
-
ε
<
b
∧
b
≤
a
source
theorem
IsLUB
.
exists_between_sub_self'
{α :
Type
u_1}
[
LinearOrderedAddCommGroup
α
]
{s :
Set
α
}
{a :
α
}
{ε :
α
}
(h :
IsLUB
s
a
)
(h₂ :
¬
a
∈
s
)
(hε :
0
<
ε
)
:
∃
b
,
b
∈
s
∧
a
-
ε
<
b
∧
b
<
a