Module operations on Mᵐᵒᵖ
#
This file contains definitions that build on top of the group action definitions in
GroupTheory.GroupAction.Opposite
.
MulOpposite.distribMulAction
extends to a Module
def
MulOpposite.opLinearEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
The function op
is a linear equivalence.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MulOpposite.coe_opLinearEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
↑(MulOpposite.opLinearEquiv R) = MulOpposite.op
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_symm
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
↑(LinearEquiv.symm (MulOpposite.opLinearEquiv R)) = MulOpposite.unop
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_toLinearMap
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
↑↑(MulOpposite.opLinearEquiv R) = MulOpposite.op
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_symm_toLinearMap
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
↑↑(LinearEquiv.symm (MulOpposite.opLinearEquiv R)) = MulOpposite.unop
theorem
MulOpposite.opLinearEquiv_toAddEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
LinearEquiv.toAddEquiv (MulOpposite.opLinearEquiv R) = MulOpposite.opAddEquiv
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_addEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
↑(MulOpposite.opLinearEquiv R) = MulOpposite.opAddEquiv
theorem
MulOpposite.opLinearEquiv_symm_toAddEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
LinearEquiv.toAddEquiv (LinearEquiv.symm (MulOpposite.opLinearEquiv R)) = AddEquiv.symm MulOpposite.opAddEquiv
@[simp]
theorem
MulOpposite.coe_opLinearEquiv_symm_addEquiv
(R : Type u)
{M : Type v}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
↑(LinearEquiv.symm (MulOpposite.opLinearEquiv R)) = AddEquiv.symm MulOpposite.opAddEquiv