Subrings invariant under an action #
class
IsInvariantSubring
(M : Type u_1)
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
(S : Subring R)
:
A typeclass for subrings invariant under a MulSemiringAction
.
Instances
instance
IsInvariantSubring.toMulSemiringAction
(M : Type u_1)
{R : Type u_2}
[Monoid M]
[Ring R]
[MulSemiringAction M R]
(S : Subring R)
[IsInvariantSubring M S]
:
MulSemiringAction M { x // x ∈ S }
def
IsInvariantSubring.subtypeHom
(M : Type u_1)
[Monoid M]
{R' : Type u_2}
[Ring R']
[MulSemiringAction M R']
(U : Subring R')
[IsInvariantSubring M U]
:
The canonical inclusion from an invariant subring.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
IsInvariantSubring.coe_subtypeHom
(M : Type u_1)
[Monoid M]
{R' : Type u_2}
[Ring R']
[MulSemiringAction M R']
(U : Subring R')
[IsInvariantSubring M U]
:
↑(IsInvariantSubring.subtypeHom M U) = Subtype.val
@[simp]
theorem
IsInvariantSubring.coe_subtypeHom'
(M : Type u_1)
[Monoid M]
{R' : Type u_2}
[Ring R']
[MulSemiringAction M R']
(U : Subring R')
[IsInvariantSubring M U]
: