Documentation

Mathlib.Algebra.BigOperators.Multiset.Lemmas

Lemmas about Multiset.sum and Multiset.prod requiring extra algebra imports #

theorem Multiset.dvd_prod {α : Type u_1} [CommMonoid α] {s : Multiset α} {a : α} :
a sa Multiset.prod s
theorem Multiset.sum_eq_zero_iff {α : Type u_1} [CanonicallyOrderedAddMonoid α] {m : Multiset α} :
Multiset.sum m = 0 ∀ (x : α), x mx = 0
theorem Multiset.prod_eq_one_iff {α : Type u_1} [CanonicallyOrderedMonoid α] {m : Multiset α} :
Multiset.prod m = 1 ∀ (x : α), x mx = 1
theorem Commute.multiset_sum_right {α : Type u_1} [NonUnitalNonAssocSemiring α] (s : Multiset α) (a : α) (h : ∀ (b : α), b sCommute a b) :
theorem Commute.multiset_sum_left {α : Type u_1} [NonUnitalNonAssocSemiring α] (s : Multiset α) (b : α) (h : ∀ (a : α), a sCommute a b) :