Documentation

Mathlib.Topology.Clopen

Clopen sets #

A clopen set is a set that is both open and closed.

def IsClopen {α : Type u} [TopologicalSpace α] (s : Set α) :

A set is clopen if it is both open and closed.

Equations
Instances For
    theorem IsClopen.isOpen {α : Type u} [TopologicalSpace α] {s : Set α} (hs : IsClopen s) :
    theorem IsClopen.isClosed {α : Type u} [TopologicalSpace α] {s : Set α} (hs : IsClopen s) :
    theorem IsClopen.frontier_eq {α : Type u} [TopologicalSpace α] {s : Set α} :

    Alias of the forward direction of isClopen_iff_frontier_eq_empty.

    theorem IsClopen.union {α : Type u} [TopologicalSpace α] {s : Set α} {t : Set α} (hs : IsClopen s) (ht : IsClopen t) :
    theorem IsClopen.inter {α : Type u} [TopologicalSpace α] {s : Set α} {t : Set α} (hs : IsClopen s) (ht : IsClopen t) :
    @[simp]
    @[simp]
    theorem isClopen_univ {α : Type u} [TopologicalSpace α] :
    IsClopen Set.univ
    theorem IsClopen.compl {α : Type u} [TopologicalSpace α] {s : Set α} (hs : IsClopen s) :
    @[simp]
    theorem isClopen_compl_iff {α : Type u} [TopologicalSpace α] {s : Set α} :
    theorem IsClopen.diff {α : Type u} [TopologicalSpace α] {s : Set α} {t : Set α} (hs : IsClopen s) (ht : IsClopen t) :
    IsClopen (s \ t)
    theorem IsClopen.prod {α : Type u} {β : Type v} [TopologicalSpace α] [TopologicalSpace β] {s : Set α} {t : Set β} (hs : IsClopen s) (ht : IsClopen t) :
    theorem isClopen_iUnion_of_finite {α : Type u} [TopologicalSpace α] {β : Type u_3} [Finite β] {s : βSet α} (h : ∀ (i : β), IsClopen (s i)) :
    IsClopen (⋃ i, s i)
    theorem Set.Finite.isClopen_biUnion {α : Type u} [TopologicalSpace α] {β : Type u_3} {s : Set β} {f : βSet α} (hs : Set.Finite s) (h : ∀ (i : β), i sIsClopen (f i)) :
    IsClopen (⋃ i ∈ s, f i)
    theorem isClopen_biUnion_finset {α : Type u} [TopologicalSpace α] {β : Type u_3} {s : Finset β} {f : βSet α} (h : ∀ (i : β), i sIsClopen (f i)) :
    IsClopen (⋃ i ∈ s, f i)
    theorem isClopen_iInter_of_finite {α : Type u} [TopologicalSpace α] {β : Type u_3} [Finite β] {s : βSet α} (h : ∀ (i : β), IsClopen (s i)) :
    IsClopen (⋂ i, s i)
    theorem Set.Finite.isClopen_biInter {α : Type u} [TopologicalSpace α] {β : Type u_3} {s : Set β} (hs : Set.Finite s) {f : βSet α} (h : ∀ (i : β), i sIsClopen (f i)) :
    IsClopen (⋂ i ∈ s, f i)
    theorem isClopen_biInter_finset {α : Type u} [TopologicalSpace α] {β : Type u_3} {s : Finset β} {f : βSet α} (h : ∀ (i : β), i sIsClopen (f i)) :
    IsClopen (⋂ i ∈ s, f i)
    theorem IsClopen.preimage {α : Type u} {β : Type v} [TopologicalSpace α] [TopologicalSpace β] {s : Set β} (h : IsClopen s) {f : αβ} (hf : Continuous f) :
    theorem ContinuousOn.preimage_clopen_of_clopen {α : Type u} {β : Type v} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} {s : Set α} {t : Set β} (hf : ContinuousOn f s) (hs : IsClopen s) (ht : IsClopen t) :
    theorem isClopen_inter_of_disjoint_cover_clopen {α : Type u} [TopologicalSpace α] {Z : Set α} {a : Set α} {b : Set α} (h : IsClopen Z) (cover : Z a b) (ha : IsOpen a) (hb : IsOpen b) (hab : Disjoint a b) :

    The intersection of a disjoint covering by two open sets of a clopen set will be clopen.

    @[simp]
    theorem isClopen_discrete {α : Type u} [TopologicalSpace α] [DiscreteTopology α] (x : Set α) :
    theorem isClopen_range_sigmaMk {ι : Type u_3} {σ : ιType u_4} [(i : ι) → TopologicalSpace (σ i)] {i : ι} :
    theorem QuotientMap.isClopen_preimage {α : Type u} {β : Type v} [TopologicalSpace α] [TopologicalSpace β] {f : αβ} (hf : QuotientMap f) {s : Set β} :