Lattice structure on order homomorphisms #
This file defines the lattice structure on order homomorphisms, which are bundled monotone functions.
Main definitions #
- OrderHom.CompleteLattice: if- βis a complete lattice, so is- α →o β
Tags #
monotone map, bundled morphism
instance
OrderHom.instSupOrderHomToPreorderToPartialOrder
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[SemilatticeSup β]
 :
instance
OrderHom.instSemilatticeSupOrderHomToPreorderToPartialOrder
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[SemilatticeSup β]
 :
SemilatticeSup (α →o β)
Equations
- One or more equations did not get rendered due to their size.
instance
OrderHom.instInfOrderHomToPreorderToPartialOrder
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[SemilatticeInf β]
 :
instance
OrderHom.instSemilatticeInfOrderHomToPreorderToPartialOrder
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[SemilatticeInf β]
 :
SemilatticeInf (α →o β)
Equations
- One or more equations did not get rendered due to their size.
Equations
- OrderHom.orderBot = OrderBot.mk (_ : ∀ (x : α →o β) (x_1 : α), ⊥ ≤ OrderHom.toFun x x_1)
Equations
- OrderHom.orderTop = OrderTop.mk (_ : ∀ (x : α →o β) (x_1 : α), OrderHom.toFun x x_1 ≤ ⊤)
instance
OrderHom.instInfSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[CompleteLattice β]
 :
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
OrderHom.sInf_apply
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[CompleteLattice β]
(s : Set (α →o β))
(x : α)
 :
theorem
OrderHom.iInf_apply
{α : Type u_1}
{β : Type u_2}
[Preorder α]
{ι : Sort u_3}
[CompleteLattice β]
(f : ι → α →o β)
(x : α)
 :
↑(⨅ i, f i) x = ⨅ i, ↑(f i) x
@[simp]
theorem
OrderHom.coe_iInf
{α : Type u_1}
{β : Type u_2}
[Preorder α]
{ι : Sort u_3}
[CompleteLattice β]
(f : ι → α →o β)
 :
↑(⨅ i, f i) = ⨅ i, ↑(f i)
instance
OrderHom.instSupSetOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[CompleteLattice β]
 :
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
OrderHom.sSup_apply
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[CompleteLattice β]
(s : Set (α →o β))
(x : α)
 :
theorem
OrderHom.iSup_apply
{α : Type u_1}
{β : Type u_2}
[Preorder α]
{ι : Sort u_3}
[CompleteLattice β]
(f : ι → α →o β)
(x : α)
 :
↑(⨆ i, f i) x = ⨆ i, ↑(f i) x
@[simp]
theorem
OrderHom.coe_iSup
{α : Type u_1}
{β : Type u_2}
[Preorder α]
{ι : Sort u_3}
[CompleteLattice β]
(f : ι → α →o β)
 :
↑(⨆ i, f i) = ⨆ i, ↑(f i)
instance
OrderHom.instCompleteLatticeOrderHomToPreorderToPartialOrderToCompleteSemilatticeInf
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[CompleteLattice β]
 :
CompleteLattice (α →o β)
Equations
- One or more equations did not get rendered due to their size.