Documentation

Mathlib.CategoryTheory.Limits.Opposites

Limits in C give colimits in Cᵒᵖ. #

We also give special cases for (co)products, (co)equalizers, and pullbacks / pushouts.

Turn a limit for F.rightOp : J ⥤ Cᵒᵖ into a limit for F : Jᵒᵖ ⥤ C.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    If F.leftOp : Jᵒᵖ ⥤ C has a colimit, we can construct a limit for F : J ⥤ Cᵒᵖ.

    If F.leftOp : Jᵒᵖ ⥤ C has a limit, we can construct a colimit for F : J ⥤ Cᵒᵖ.

    The isomorphism from the opposite of the coproduct to the product.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The isomorphism from the opposite of the product to the coproduct.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The canonical isomorphism relating Span f.op g.op and (Cospan f g).op

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The canonical isomorphism relating (Cospan f g).op and Span f.op g.op

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The canonical isomorphism relating Cospan f.op g.op and (Span f g).op

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The canonical isomorphism relating (Span f g).op and Cospan f.op g.op

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The obvious map PushoutCocone f g → PullbackCone f.unop g.unop

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The obvious map PushoutCocone f.op g.op → PullbackCone f g

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The obvious map PullbackCone f g → PushoutCocone f.unop g.unop

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      The obvious map PullbackCone f g → PushoutCocone f.op g.op

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        If c is a pullback cone, then c.op.unop is isomorphic to c.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          If c is a pullback cone in Cᵒᵖ, then c.unop.op is isomorphic to c.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            If c is a pushout cocone, then c.op.unop is isomorphic to c.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              If c is a pushout cocone in Cᵒᵖ, then c.unop.op is isomorphic to c.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                A pushout cone is a colimit cocone if and only if the corresponding pullback cone in the opposite category is a limit cone.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For

                                  A pushout cone is a colimit cocone in Cᵒᵖ if and only if the corresponding pullback cone in C is a limit cone.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For

                                    A pullback cone is a limit cone if and only if the corresponding pushout cocone in the opposite category is a colimit cocone.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For

                                      A pullback cone is a limit cone in Cᵒᵖ if and only if the corresponding pushout cocone in C is a colimit cocone.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        The pullback of f and g in C is isomorphic to the pushout of f.op and g.op in Cᵒᵖ.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          @[simp]
                                          theorem CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : Y Z) [CategoryTheory.Limits.HasPullback f g] [CategoryTheory.Limits.HasPushout f.op g.op] :
                                          CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackIsoUnopPushout f g).inv CategoryTheory.Limits.pullback.fst = CategoryTheory.Limits.pushout.inl.unop
                                          @[simp]
                                          @[simp]
                                          theorem CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : Y Z) [CategoryTheory.Limits.HasPullback f g] [CategoryTheory.Limits.HasPushout f.op g.op] :
                                          CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackIsoUnopPushout f g).inv CategoryTheory.Limits.pullback.snd = CategoryTheory.Limits.pushout.inr.unop
                                          @[simp]
                                          theorem CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inl {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : Y Z) [CategoryTheory.Limits.HasPullback f g] [CategoryTheory.Limits.HasPushout f.op g.op] :
                                          CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.pushout.inl (CategoryTheory.Limits.pullbackIsoUnopPushout f g).hom.op = CategoryTheory.Limits.pullback.fst.op
                                          @[simp]
                                          theorem CategoryTheory.Limits.pullbackIsoUnopPushout_hom_inr {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : Y Z) [CategoryTheory.Limits.HasPullback f g] [CategoryTheory.Limits.HasPushout f.op g.op] :
                                          CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.pushout.inr (CategoryTheory.Limits.pullbackIsoUnopPushout f g).hom.op = CategoryTheory.Limits.pullback.snd.op

                                          The pushout of f and g in C is isomorphic to the pullback of f.op and g.op in Cᵒᵖ.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Limits.pushoutIsoUnopPullback_inl_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : X Y) [CategoryTheory.Limits.HasPushout f g] [CategoryTheory.Limits.HasPullback f.op g.op] :
                                            CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.pushout.inl (CategoryTheory.Limits.pushoutIsoUnopPullback f g).hom = CategoryTheory.Limits.pullback.fst.unop
                                            @[simp]
                                            theorem CategoryTheory.Limits.pushoutIsoUnopPullback_inr_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : X Y) [CategoryTheory.Limits.HasPushout f g] [CategoryTheory.Limits.HasPullback f.op g.op] :
                                            CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.pushout.inr (CategoryTheory.Limits.pushoutIsoUnopPullback f g).hom = CategoryTheory.Limits.pullback.snd.unop
                                            @[simp]
                                            theorem CategoryTheory.Limits.pushoutIsoUnopPullback_inv_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : X Y) [CategoryTheory.Limits.HasPushout f g] [CategoryTheory.Limits.HasPullback f.op g.op] :
                                            CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pushoutIsoUnopPullback f g).inv.op CategoryTheory.Limits.pullback.fst = CategoryTheory.Limits.pushout.inl.op
                                            @[simp]
                                            theorem CategoryTheory.Limits.pushoutIsoUnopPullback_inv_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : X Y) [CategoryTheory.Limits.HasPushout f g] [CategoryTheory.Limits.HasPullback f.op g.op] :
                                            CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pushoutIsoUnopPullback f g).inv.op CategoryTheory.Limits.pullback.snd = CategoryTheory.Limits.pushout.inr.op

                                            A colimit cokernel cofork gives a limit kernel fork in the opposite category

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              A colimit cokernel cofork in the opposite category gives a limit kernel fork in the original category

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                A limit kernel fork gives a colimit cokernel cofork in the opposite category

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For

                                                  A limit kernel fork in the opposite category gives a colimit cokernel cofork in the original category

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For