Documentation

Mathlib.Analysis.Calculus.FormalMultilinearSeries

Formal multilinear series #

In this file we define FormalMultilinearSeries 𝕜 E F to be a family of n-multilinear maps for all n, designed to model the sequence of derivatives of a function. In other files we use this notion to define C^n functions (called contDiff in mathlib) and analytic functions.

Notations #

We use the notation E [×n]→L[𝕜] F for the space of continuous multilinear maps on E^n with values in F. This is the space in which the n-th derivative of a function from E to F lives.

Tags #

multilinear, formal series

def FormalMultilinearSeries (𝕜 : Type u_1) (E : Type u_2) (F : Type u_3) [Ring 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] :
Type (max (max u_3 u_2) 0)

A formal multilinear series over a field 𝕜, from E to F, is given by a family of multilinear maps from E^n to F for all n.

Equations
Instances For
    Equations
    Equations
    • instInhabitedFormalMultilinearSeriesToRing = { default := 0 }
    @[simp]
    theorem FormalMultilinearSeries.neg_apply {𝕜 : Type u} {E : Type v} {F : Type w} [CommRing 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] (f : FormalMultilinearSeries 𝕜 E F) (n : ) :
    (-f) n = -f n
    theorem FormalMultilinearSeries.ext {𝕜 : Type u} {E : Type v} {F : Type w} [CommRing 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] {p : FormalMultilinearSeries 𝕜 E F} {q : FormalMultilinearSeries 𝕜 E F} (h : ∀ (n : ), p n = q n) :
    p = q
    theorem FormalMultilinearSeries.ext_iff {𝕜 : Type u} {E : Type v} {F : Type w} [CommRing 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] {p : FormalMultilinearSeries 𝕜 E F} {q : FormalMultilinearSeries 𝕜 E F} :
    p = q ∀ (n : ), p n = q n
    theorem FormalMultilinearSeries.ne_iff {𝕜 : Type u} {E : Type v} {F : Type w} [CommRing 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] {p : FormalMultilinearSeries 𝕜 E F} {q : FormalMultilinearSeries 𝕜 E F} :
    p q n, p n q n

    Cartesian product of two formal multilinear series (with the same field 𝕜 and the same source space, but possibly different target spaces).

    Equations
    Instances For

      Killing the zeroth coefficient in a formal multilinear series

      Equations
      Instances For
        theorem FormalMultilinearSeries.congr {𝕜 : Type u} {E : Type v} {F : Type w} [CommRing 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] (p : FormalMultilinearSeries 𝕜 E F) {m : } {n : } {v : Fin mE} {w : Fin nE} (h1 : m = n) (h2 : ∀ (i : ) (him : i < m) (hin : i < n), v { val := i, isLt := him } = w { val := i, isLt := hin }) :
        ↑(p m) v = ↑(p n) w

        Convenience congruence lemma stating in a dependent setting that, if the arguments to a formal multilinear series are equal, then the values are also equal.

        Composing each term pₙ in a formal multilinear series with (u, ..., u) where u is a fixed continuous linear map, gives a new formal multilinear series p.compContinuousLinearMap u.

        Equations
        Instances For
          def FormalMultilinearSeries.restrictScalars (𝕜 : Type u) {𝕜' : Type u'} {E : Type v} {F : Type w} [CommRing 𝕜] [AddCommGroup E] [Module 𝕜 E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul 𝕜 F] [CommRing 𝕜'] [SMul 𝕜 𝕜'] [Module 𝕜' E] [ContinuousConstSMul 𝕜' E] [IsScalarTower 𝕜 𝕜' E] [Module 𝕜' F] [ContinuousConstSMul 𝕜' F] [IsScalarTower 𝕜 𝕜' F] (p : FormalMultilinearSeries 𝕜' E F) :

          Reinterpret a formal 𝕜'-multilinear series as a formal 𝕜-multilinear series.

          Equations
          Instances For

            Forgetting the zeroth term in a formal multilinear series, and interpreting the following terms as multilinear maps into E →L[𝕜] F. If p corresponds to the Taylor series of a function, then p.shift is the Taylor series of the derivative of the function.

            Equations
            Instances For

              Adding a zeroth term to a formal multilinear series taking values in E →L[𝕜] F. This corresponds to starting from a Taylor series for the derivative of a function, and building a Taylor series for the function itself.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                Composing each term pₙ in a formal multilinear series with a continuous linear map f on the left gives a new formal multilinear series f.compFormalMultilinearSeries p whose general term is f ∘ pₙ.

                Equations
                Instances For

                  The index of the first non-zero coefficient in p (or 0 if all coefficients are zero). This is the order of the isolated zero of an analytic function f at a point if p is the Taylor series of f at that point.

                  Equations
                  Instances For
                    def FormalMultilinearSeries.coeff {𝕜 : Type u} {E : Type v} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] (p : FormalMultilinearSeries 𝕜 𝕜 E) (n : ) :
                    E

                    The nth coefficient of p when seen as a power series.

                    Equations
                    Instances For
                      @[simp]
                      theorem FormalMultilinearSeries.apply_eq_prod_smul_coeff {𝕜 : Type u} {E : Type v} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {p : FormalMultilinearSeries 𝕜 𝕜 E} {n : } {y : Fin n𝕜} :
                      ↑(p n) y = (Finset.prod Finset.univ fun i => y i) FormalMultilinearSeries.coeff p n
                      @[simp]
                      theorem FormalMultilinearSeries.apply_eq_pow_smul_coeff {𝕜 : Type u} {E : Type v} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {p : FormalMultilinearSeries 𝕜 𝕜 E} {n : } {z : 𝕜} :
                      (↑(p n) fun x => z) = z ^ n FormalMultilinearSeries.coeff p n
                      noncomputable def FormalMultilinearSeries.fslope {𝕜 : Type u} {E : Type v} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] (p : FormalMultilinearSeries 𝕜 𝕜 E) :

                      The formal counterpart of dslope, corresponding to the expansion of (f z - f 0) / z. If f has p as a power series, then dslope f has fslope p as a power series.

                      Equations
                      Instances For

                        The formal multilinear series where all terms of positive degree are equal to zero, and the term of degree zero is c. It is the power series expansion of the constant function equal to c everywhere.

                        Equations
                        Instances For
                          @[simp]
                          theorem constFormalMultilinearSeries_apply {𝕜 : Type u} {E : Type v} {F : Type w} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {c : F} {n : } (hn : n 0) :
                          def ContinuousLinearMap.fpowerSeries {𝕜 : Type u} {E : Type v} {F : Type w} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] (f : E →L[𝕜] F) (x : E) :

                          Formal power series of a continuous linear map f : E →L[𝕜] F at x : E: f y = f x + f (y - x).

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem ContinuousLinearMap.fpowerSeries_apply_add_two {𝕜 : Type u} {E : Type v} {F : Type w} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedAddCommGroup F] [NormedSpace 𝕜 F] (f : E →L[𝕜] F) (x : E) (n : ) :

                            The geometric series 1 + x + x ^ 2 + ... as a FormalMultilinearSeries.

                            Equations
                            Instances For