Documentation

Mathlib.Algebra.Homology.ShortExact.Abelian

Short exact sequences in abelian categories #

In an abelian category, a left-split or right-split short exact sequence admits a splitting.

theorem CategoryTheory.isIso_of_shortExact_of_isIso_of_isIso {π’œ : Type u_1} [CategoryTheory.Category.{u_2, u_1} π’œ] {A : π’œ} {B : π’œ} {C : π’œ} {A' : π’œ} {B' : π’œ} {C' : π’œ} {f : A ⟢ B} {g : B ⟢ C} {f' : A' ⟢ B'} {g' : B' ⟢ C'} [CategoryTheory.Abelian π’œ] (h : CategoryTheory.ShortExact f g) (h' : CategoryTheory.ShortExact f' g') (i₁ : A ⟢ A') (iβ‚‚ : B ⟢ B') (i₃ : C ⟢ C') (comm₁ : autoParam (CategoryTheory.CategoryStruct.comp i₁ f' = CategoryTheory.CategoryStruct.comp f iβ‚‚) _auto✝) (commβ‚‚ : autoParam (CategoryTheory.CategoryStruct.comp iβ‚‚ g' = CategoryTheory.CategoryStruct.comp g i₃) _auto✝) [CategoryTheory.IsIso i₁] [CategoryTheory.IsIso i₃] :
def CategoryTheory.Splitting.mk' {π’œ : Type u_1} [CategoryTheory.Category.{u_2, u_1} π’œ] {A : π’œ} {B : π’œ} {C : π’œ} {f : A ⟢ B} {g : B ⟢ C} [CategoryTheory.Abelian π’œ] (h : CategoryTheory.ShortExact f g) (i : B ⟢ A ⊞ C) (h1 : CategoryTheory.CategoryStruct.comp f i = CategoryTheory.Limits.biprod.inl) (h2 : CategoryTheory.CategoryStruct.comp i CategoryTheory.Limits.biprod.snd = g) :

To construct a splitting of A -f⟢ B -g⟢ C it suffices to supply a morphism i : B ⟢ A ⊞ C such that f ≫ i is the canonical map biprod.inl : A ⟢ A ⊞ C and i ≫ q = g, where q is the canonical map biprod.snd : A ⊞ C ⟢ C, together with proofs that f is mono and g is epi.

The morphism i is then automatically an isomorphism.

Equations
Instances For
    def CategoryTheory.Splitting.mk'' {π’œ : Type u_1} [CategoryTheory.Category.{u_2, u_1} π’œ] {A : π’œ} {B : π’œ} {C : π’œ} {f : A ⟢ B} {g : B ⟢ C} [CategoryTheory.Abelian π’œ] (h : CategoryTheory.ShortExact f g) (i : A ⊞ C ⟢ B) (h1 : CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl i = f) (h2 : CategoryTheory.CategoryStruct.comp i g = CategoryTheory.Limits.biprod.snd) :

    To construct a splitting of A -f⟢ B -g⟢ C it suffices to supply a morphism i : A ⊞ C ⟢ B such that p ≫ i = f where p is the canonical map biprod.inl : A ⟢ A ⊞ C, and i ≫ g is the canonical map biprod.snd : A ⊞ C ⟢ C, together with proofs that f is mono and g is epi.

    The morphism i is then automatically an isomorphism.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.LeftSplit.splitting {π’œ : Type u_1} [CategoryTheory.Category.{u_2, u_1} π’œ] {A : π’œ} {B : π’œ} {C : π’œ} [CategoryTheory.Abelian π’œ] {f : A ⟢ B} {g : B ⟢ C} (h : CategoryTheory.LeftSplit f g) :

      A short exact sequence that is left split admits a splitting.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def CategoryTheory.RightSplit.splitting {π’œ : Type u_1} [CategoryTheory.Category.{u_2, u_1} π’œ] {A : π’œ} {B : π’œ} {C : π’œ} [CategoryTheory.Abelian π’œ] {f : A ⟢ B} {g : B ⟢ C} (h : CategoryTheory.RightSplit f g) :

        A short exact sequence that is right split admits a splitting.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For