Documentation

Mathlib.Topology.GDelta

sets #

In this file we define sets and prove their basic properties.

Main definitions #

Main results #

We prove that finite or countable intersections of Gδ sets is a Gδ set. We also prove that the continuity set of a function from a topological space to an (e)metric space is a Gδ set.

Tags #

Gδ set, residual set

def IsGδ {α : Type u_1} [TopologicalSpace α] (s : Set α) :

A Gδ set is a countable intersection of open sets.

Equations
Instances For
    theorem IsOpen.isGδ {α : Type u_1} [TopologicalSpace α] {s : Set α} (h : IsOpen s) :

    An open set is a Gδ set.

    @[simp]
    theorem isGδ_empty {α : Type u_1} [TopologicalSpace α] :
    @[simp]
    theorem isGδ_univ {α : Type u_1} [TopologicalSpace α] :
    IsGδ Set.univ
    theorem isGδ_biInter_of_open {α : Type u_1} {ι : Type u_4} [TopologicalSpace α] {I : Set ι} (hI : Set.Countable I) {f : ιSet α} (hf : ∀ (i : ι), i IIsOpen (f i)) :
    IsGδ (⋂ (i : ι) (_ : i I), f i)
    theorem isGδ_iInter_of_open {α : Type u_1} {ι : Type u_4} [TopologicalSpace α] [Encodable ι] {f : ιSet α} (hf : ∀ (i : ι), IsOpen (f i)) :
    IsGδ (⋂ (i : ι), f i)
    theorem isGδ_iInter {α : Type u_1} {ι : Type u_4} [TopologicalSpace α] [Encodable ι] {s : ιSet α} (hs : ∀ (i : ι), IsGδ (s i)) :
    IsGδ (⋂ (i : ι), s i)

    The intersection of an encodable family of Gδ sets is a Gδ set.

    theorem isGδ_biInter {α : Type u_1} {ι : Type u_4} [TopologicalSpace α] {s : Set ι} (hs : Set.Countable s) {t : (i : ι) → i sSet α} (ht : ∀ (i : ι) (hi : i s), IsGδ (t i hi)) :
    IsGδ (⋂ (i : ι) (h : i s), t i h)
    theorem isGδ_sInter {α : Type u_1} [TopologicalSpace α] {S : Set (Set α)} (h : ∀ (s : Set α), s SIsGδ s) (hS : Set.Countable S) :

    A countable intersection of Gδ sets is a Gδ set.

    theorem IsGδ.inter {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} (hs : IsGδ s) (ht : IsGδ t) :
    IsGδ (s t)
    theorem IsGδ.union {α : Type u_1} [TopologicalSpace α] {s : Set α} {t : Set α} (hs : IsGδ s) (ht : IsGδ t) :
    IsGδ (s t)

    The union of two Gδ sets is a Gδ set.

    theorem isGδ_biUnion {α : Type u_1} {ι : Type u_4} [TopologicalSpace α] {s : Set ι} (hs : Set.Finite s) {f : ιSet α} (h : ∀ (i : ι), i sIsGδ (f i)) :
    IsGδ (⋃ (i : ι) (_ : i s), f i)

    The union of finitely many Gδ sets is a Gδ set.

    theorem isGδ_compl_singleton {α : Type u_1} [TopologicalSpace α] [T1Space α] (a : α) :
    theorem Set.Countable.isGδ_compl {α : Type u_1} [TopologicalSpace α] [T1Space α] {s : Set α} (hs : Set.Countable s) :
    theorem Set.Finite.isGδ_compl {α : Type u_1} [TopologicalSpace α] [T1Space α] {s : Set α} (hs : Set.Finite s) :
    theorem Finset.isGδ_compl {α : Type u_1} [TopologicalSpace α] [T1Space α] (s : Finset α) :
    IsGδ (s)
    theorem isGδ_setOf_continuousAt {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [UniformSpace β] [Filter.IsCountablyGenerated (uniformity β)] (f : αβ) :

    The set of points where a function is continuous is a Gδ set.

    def residual (α : Type u_5) [TopologicalSpace α] :

    A set s is called residual if it includes a countable intersection of dense open sets.

    Equations
    Instances For
      theorem residual_of_dense_open {α : Type u_1} [TopologicalSpace α] {s : Set α} (ho : IsOpen s) (hd : Dense s) :

      Dense open sets are residual.

      theorem residual_of_dense_Gδ {α : Type u_1} [TopologicalSpace α] {s : Set α} (ho : IsGδ s) (hd : Dense s) :

      Dense Gδ sets are residual.

      theorem mem_residual_iff {α : Type u_1} [TopologicalSpace α] {s : Set α} :
      s residual α S, (∀ (t : Set α), t SIsOpen t) (∀ (t : Set α), t SDense t) Set.Countable S ⋂₀ S s

      A set is residual iff it includes a countable intersection of dense open sets.