Bundled continuous maps into orders, with order-compatible topology #
def
ContinuousMap.abs
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrderedAddCommGroup β]
[OrderTopology β]
(f : C(α, β))
:
The pointwise absolute value of a continuous function as a continuous function.
Equations
- ContinuousMap.abs f = ContinuousMap.mk fun x => |↑f x|
Instances For
instance
ContinuousMap.instAbsContinuousMap
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrderedAddCommGroup β]
[OrderTopology β]
:
Equations
- ContinuousMap.instAbsContinuousMap = { abs := fun f => ContinuousMap.abs f }
@[simp]
theorem
ContinuousMap.abs_apply
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrderedAddCommGroup β]
[OrderTopology β]
(f : C(α, β))
(x : α)
:
↑|f| x = |↑f x|
We now set up the partial order and lattice structure (given by pointwise min and max) on continuous functions.
instance
ContinuousMap.partialOrder
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[PartialOrder β]
:
PartialOrder C(α, β)
theorem
ContinuousMap.le_def
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[PartialOrder β]
{f : C(α, β)}
{g : C(α, β)}
:
theorem
ContinuousMap.lt_def
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[PartialOrder β]
{f : C(α, β)}
{g : C(α, β)}
:
instance
ContinuousMap.sup
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
:
Equations
- ContinuousMap.sup = { sup := fun f g => ContinuousMap.mk fun a => max (↑f a) (↑g a) }
@[simp]
theorem
ContinuousMap.sup_coe
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
(f : C(α, β))
(g : C(α, β))
:
@[simp]
theorem
ContinuousMap.sup_apply
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
(f : C(α, β))
(g : C(α, β))
(a : α)
:
instance
ContinuousMap.semilatticeSup
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
:
Equations
- One or more equations did not get rendered due to their size.
instance
ContinuousMap.inf
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
:
Equations
- ContinuousMap.inf = { inf := fun f g => ContinuousMap.mk fun a => min (↑f a) (↑g a) }
@[simp]
theorem
ContinuousMap.inf_coe
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
(f : C(α, β))
(g : C(α, β))
:
@[simp]
theorem
ContinuousMap.inf_apply
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
(f : C(α, β))
(g : C(α, β))
(a : α)
:
instance
ContinuousMap.semilatticeInf
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
:
Equations
- One or more equations did not get rendered due to their size.
instance
ContinuousMap.instLatticeContinuousMap
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder β]
[OrderClosedTopology β]
:
Equations
- One or more equations did not get rendered due to their size.
theorem
ContinuousMap.sup'_apply
{β : Type u_2}
{γ : Type u_3}
[TopologicalSpace β]
[TopologicalSpace γ]
[LinearOrder γ]
[OrderClosedTopology γ]
{ι : Type u_4}
{s : Finset ι}
(H : Finset.Nonempty s)
(f : ι → C(β, γ))
(b : β)
:
↑(Finset.sup' s H f) b = Finset.sup' s H fun a => ↑(f a) b
@[simp]
theorem
ContinuousMap.sup'_coe
{β : Type u_2}
{γ : Type u_3}
[TopologicalSpace β]
[TopologicalSpace γ]
[LinearOrder γ]
[OrderClosedTopology γ]
{ι : Type u_4}
{s : Finset ι}
(H : Finset.Nonempty s)
(f : ι → C(β, γ))
:
↑(Finset.sup' s H f) = Finset.sup' s H fun a => ↑(f a)
theorem
ContinuousMap.inf'_apply
{β : Type u_2}
{γ : Type u_3}
[TopologicalSpace β]
[TopologicalSpace γ]
[LinearOrder γ]
[OrderClosedTopology γ]
{ι : Type u_4}
{s : Finset ι}
(H : Finset.Nonempty s)
(f : ι → C(β, γ))
(b : β)
:
↑(Finset.inf' s H f) b = Finset.inf' s H fun a => ↑(f a) b
@[simp]
theorem
ContinuousMap.inf'_coe
{β : Type u_2}
{γ : Type u_3}
[TopologicalSpace β]
[TopologicalSpace γ]
[LinearOrder γ]
[OrderClosedTopology γ]
{ι : Type u_4}
{s : Finset ι}
(H : Finset.Nonempty s)
(f : ι → C(β, γ))
:
↑(Finset.inf' s H f) = Finset.inf' s H fun a => ↑(f a)
def
ContinuousMap.IccExtend
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder α]
[OrderTopology α]
{a : α}
{b : α}
(h : a ≤ b)
(f : C(↑(Set.Icc a b), β))
:
Extend a continuous function f : C(Set.Icc a b, β)
to a function f : C(α, β)
.
Equations
- ContinuousMap.IccExtend h f = ContinuousMap.mk (Set.IccExtend h ↑f)
Instances For
@[simp]
theorem
ContinuousMap.coe_IccExtend
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder α]
[OrderTopology α]
{a : α}
{b : α}
(h : a ≤ b)
(f : C(↑(Set.Icc a b), β))
:
↑(ContinuousMap.IccExtend h f) = Set.IccExtend h ↑f