Documentation

Mathlib.Topology.ContinuousFunction.Ordered

Bundled continuous maps into orders, with order-compatible topology #

def ContinuousMap.abs {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrderedAddCommGroup β] [OrderTopology β] (f : C(α, β)) :
C(α, β)

The pointwise absolute value of a continuous function as a continuous function.

Equations
Instances For
    Equations
    @[simp]
    theorem ContinuousMap.abs_apply {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrderedAddCommGroup β] [OrderTopology β] (f : C(α, β)) (x : α) :
    |f| x = |f x|

    We now set up the partial order and lattice structure (given by pointwise min and max) on continuous functions.

    Equations
    • ContinuousMap.partialOrder = PartialOrder.lift (fun f => f.toFun) (_ : ∀ (f g : C(α, β)), (fun f => f.toFun) f = (fun f => f.toFun) gf = g)
    theorem ContinuousMap.le_def {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [PartialOrder β] {f : C(α, β)} {g : C(α, β)} :
    f g ∀ (a : α), f a g a
    theorem ContinuousMap.lt_def {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [PartialOrder β] {f : C(α, β)} {g : C(α, β)} :
    f < g (∀ (a : α), f a g a) a, f a < g a
    instance ContinuousMap.sup {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrder β] [OrderClosedTopology β] :
    Sup C(α, β)
    Equations
    @[simp]
    theorem ContinuousMap.sup_coe {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrder β] [OrderClosedTopology β] (f : C(α, β)) (g : C(α, β)) :
    ↑(f g) = f g
    @[simp]
    theorem ContinuousMap.sup_apply {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrder β] [OrderClosedTopology β] (f : C(α, β)) (g : C(α, β)) (a : α) :
    ↑(f g) a = max (f a) (g a)
    Equations
    • One or more equations did not get rendered due to their size.
    instance ContinuousMap.inf {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrder β] [OrderClosedTopology β] :
    Inf C(α, β)
    Equations
    @[simp]
    theorem ContinuousMap.inf_coe {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrder β] [OrderClosedTopology β] (f : C(α, β)) (g : C(α, β)) :
    ↑(f g) = f g
    @[simp]
    theorem ContinuousMap.inf_apply {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrder β] [OrderClosedTopology β] (f : C(α, β)) (g : C(α, β)) (a : α) :
    ↑(f g) a = min (f a) (g a)
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    • One or more equations did not get rendered due to their size.
    theorem ContinuousMap.sup'_apply {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] [LinearOrder γ] [OrderClosedTopology γ] {ι : Type u_4} {s : Finset ι} (H : Finset.Nonempty s) (f : ιC(β, γ)) (b : β) :
    ↑(Finset.sup' s H f) b = Finset.sup' s H fun a => ↑(f a) b
    @[simp]
    theorem ContinuousMap.sup'_coe {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] [LinearOrder γ] [OrderClosedTopology γ] {ι : Type u_4} {s : Finset ι} (H : Finset.Nonempty s) (f : ιC(β, γ)) :
    ↑(Finset.sup' s H f) = Finset.sup' s H fun a => ↑(f a)
    theorem ContinuousMap.inf'_apply {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] [LinearOrder γ] [OrderClosedTopology γ] {ι : Type u_4} {s : Finset ι} (H : Finset.Nonempty s) (f : ιC(β, γ)) (b : β) :
    ↑(Finset.inf' s H f) b = Finset.inf' s H fun a => ↑(f a) b
    @[simp]
    theorem ContinuousMap.inf'_coe {β : Type u_2} {γ : Type u_3} [TopologicalSpace β] [TopologicalSpace γ] [LinearOrder γ] [OrderClosedTopology γ] {ι : Type u_4} {s : Finset ι} (H : Finset.Nonempty s) (f : ιC(β, γ)) :
    ↑(Finset.inf' s H f) = Finset.inf' s H fun a => ↑(f a)
    def ContinuousMap.IccExtend {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrder α] [OrderTopology α] {a : α} {b : α} (h : a b) (f : C(↑(Set.Icc a b), β)) :
    C(α, β)

    Extend a continuous function f : C(Set.Icc a b, β) to a function f : C(α, β).

    Equations
    Instances For
      @[simp]
      theorem ContinuousMap.coe_IccExtend {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [TopologicalSpace β] [LinearOrder α] [OrderTopology α] {a : α} {b : α} (h : a b) (f : C(↑(Set.Icc a b), β)) :