Documentation

Mathlib.Topology.Algebra.Module.Star

The star operation, bundled as a continuous star-linear equiv #

@[simp]
theorem starL_symm_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
∀ (a : A), ↑(ContinuousLinearEquiv.symm (starL R)) a = ↑(AddEquiv.symm starAddEquiv) a
@[simp]
theorem starL_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
∀ (a : A), ↑(starL R) a = star a
def starL (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :

If A is a topological module over a commutative R with compatible actions, then star is a continuous semilinear equivalence.

Equations
Instances For
    @[simp]
    theorem starL'_symm_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [TrivialStar R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
    ∀ (a : A), ↑(ContinuousLinearEquiv.symm (starL' R)) a = ↑(LinearEquiv.symm (starL R).toLinearEquiv) (↑(LinearEquiv.symm { toLinearMap := { toAddHom := { toFun := id, map_add' := (_ : ∀ (x y : A), Equiv.toFun (AddEquiv.refl A).toEquiv (x + y) = Equiv.toFun (AddEquiv.refl A).toEquiv x + Equiv.toFun (AddEquiv.refl A).toEquiv y) }, map_smul' := (_ : ∀ (r : R) (a : A), r a = star r a) }, invFun := id, left_inv := (_ : Function.LeftInverse (AddEquiv.refl A).toEquiv.invFun (AddEquiv.refl A).toEquiv.toFun), right_inv := (_ : Function.RightInverse (AddEquiv.refl A).toEquiv.invFun (AddEquiv.refl A).toEquiv.toFun) }) a)
    @[simp]
    theorem starL'_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [TrivialStar R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
    ∀ (a : A), ↑(starL' R) a = star a
    def starL' (R : Type u_1) {A : Type u_2} [CommSemiring R] [StarRing R] [TrivialStar R] [AddCommMonoid A] [StarAddMonoid A] [Module R A] [StarModule R A] [TopologicalSpace A] [ContinuousStar A] :
    A ≃L[R] A

    If A is a topological module over a commutative R with trivial star and compatible actions, then star is a continuous linear equivalence.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      @[simp]

      The self-adjoint part of an element of a star module, as a continuous linear map.

      Equations
      Instances For
        @[simp]
        theorem skewAdjointPartL_apply_coe (R : Type u_1) (A : Type u_2) [Semiring R] [StarMul R] [TrivialStar R] [AddCommGroup A] [Module R A] [StarAddMonoid A] [StarModule R A] [Invertible 2] [TopologicalSpace A] [ContinuousSub A] [ContinuousStar A] [ContinuousConstSMul R A] (x : A) :
        ↑(↑(skewAdjointPartL R A) x) = 2 (x - star x)
        @[simp]
        theorem skewAdjointPartL_toFun_coe (R : Type u_1) (A : Type u_2) [Semiring R] [StarMul R] [TrivialStar R] [AddCommGroup A] [Module R A] [StarAddMonoid A] [StarModule R A] [Invertible 2] [TopologicalSpace A] [ContinuousSub A] [ContinuousStar A] [ContinuousConstSMul R A] (x : A) :
        ↑(↑(skewAdjointPartL R A) x) = 2 (x - star x)

        The skew-adjoint part of an element of a star module, as a continuous linear map.

        Equations
        Instances For

          The decomposition of elements of a star module into their self- and skew-adjoint parts, as a continuous linear equivalence.

          Equations
          Instances For