Definition of well-known power series #
In this file we define the following power series:
-
PowerSeries.invUnitsSub
: givenu : Rˣ
, this is the series for1 / (u - x)
. It is given by∑ n, x ^ n /ₚ u ^ (n + 1)
. -
PowerSeries.sin
,PowerSeries.cos
,PowerSeries.exp
: power series for sin, cosine, and exponential functions.
The power series for 1 / (u - x)
.
Equations
- PowerSeries.invUnitsSub u = PowerSeries.mk fun n => 1 /ₚ u ^ (n + 1)
Instances For
@[simp]
theorem
PowerSeries.coeff_invUnitsSub
{R : Type u_1}
[Ring R]
(u : Rˣ)
(n : ℕ)
:
↑(PowerSeries.coeff R n) (PowerSeries.invUnitsSub u) = 1 /ₚ u ^ (n + 1)
@[simp]
theorem
PowerSeries.constantCoeff_invUnitsSub
{R : Type u_1}
[Ring R]
(u : Rˣ)
:
↑(PowerSeries.constantCoeff R) (PowerSeries.invUnitsSub u) = 1 /ₚ u
@[simp]
theorem
PowerSeries.invUnitsSub_mul_X
{R : Type u_1}
[Ring R]
(u : Rˣ)
:
PowerSeries.invUnitsSub u * PowerSeries.X = PowerSeries.invUnitsSub u * ↑(PowerSeries.C R) ↑u - 1
@[simp]
theorem
PowerSeries.invUnitsSub_mul_sub
{R : Type u_1}
[Ring R]
(u : Rˣ)
:
PowerSeries.invUnitsSub u * (↑(PowerSeries.C R) ↑u - PowerSeries.X) = 1
theorem
PowerSeries.map_invUnitsSub
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
(f : R →+* S)
(u : Rˣ)
:
↑(PowerSeries.map f) (PowerSeries.invUnitsSub u) = PowerSeries.invUnitsSub (↑(Units.map ↑f) u)
Power series for the exponential function at zero.
Equations
- PowerSeries.exp A = PowerSeries.mk fun n => ↑(algebraMap ℚ A) (1 / ↑(Nat.factorial n))
Instances For
Power series for the sine function at zero.
Equations
- PowerSeries.sin A = PowerSeries.mk fun n => if Even n then 0 else ↑(algebraMap ℚ A) ((-1) ^ (n / 2) / ↑(Nat.factorial n))
Instances For
Power series for the cosine function at zero.
Equations
- PowerSeries.cos A = PowerSeries.mk fun n => if Even n then ↑(algebraMap ℚ A) ((-1) ^ (n / 2) / ↑(Nat.factorial n)) else 0
Instances For
@[simp]
theorem
PowerSeries.coeff_exp
{A : Type u_1}
[Ring A]
[Algebra ℚ A]
(n : ℕ)
:
↑(PowerSeries.coeff A n) (PowerSeries.exp A) = ↑(algebraMap ℚ A) (1 / ↑(Nat.factorial n))
@[simp]
theorem
PowerSeries.constantCoeff_exp
{A : Type u_1}
[Ring A]
[Algebra ℚ A]
:
↑(PowerSeries.constantCoeff A) (PowerSeries.exp A) = 1
@[simp]
theorem
PowerSeries.coeff_sin_bit0
{A : Type u_1}
[Ring A]
[Algebra ℚ A]
(n : ℕ)
:
↑(PowerSeries.coeff A (bit0 n)) (PowerSeries.sin A) = 0
@[simp]
theorem
PowerSeries.coeff_sin_bit1
{A : Type u_1}
[Ring A]
[Algebra ℚ A]
(n : ℕ)
:
↑(PowerSeries.coeff A (bit1 n)) (PowerSeries.sin A) = (-1) ^ n * ↑(PowerSeries.coeff A (bit1 n)) (PowerSeries.exp A)
@[simp]
theorem
PowerSeries.coeff_cos_bit0
{A : Type u_1}
[Ring A]
[Algebra ℚ A]
(n : ℕ)
:
↑(PowerSeries.coeff A (bit0 n)) (PowerSeries.cos A) = (-1) ^ n * ↑(PowerSeries.coeff A (bit0 n)) (PowerSeries.exp A)
@[simp]
theorem
PowerSeries.coeff_cos_bit1
{A : Type u_1}
[Ring A]
[Algebra ℚ A]
(n : ℕ)
:
↑(PowerSeries.coeff A (bit1 n)) (PowerSeries.cos A) = 0
@[simp]
theorem
PowerSeries.map_exp
{A : Type u_1}
{A' : Type u_2}
[Ring A]
[Ring A']
[Algebra ℚ A]
[Algebra ℚ A']
(f : A →+* A')
:
↑(PowerSeries.map f) (PowerSeries.exp A) = PowerSeries.exp A'
@[simp]
theorem
PowerSeries.map_sin
{A : Type u_1}
{A' : Type u_2}
[Ring A]
[Ring A']
[Algebra ℚ A]
[Algebra ℚ A']
(f : A →+* A')
:
↑(PowerSeries.map f) (PowerSeries.sin A) = PowerSeries.sin A'
@[simp]
theorem
PowerSeries.map_cos
{A : Type u_1}
{A' : Type u_2}
[Ring A]
[Ring A']
[Algebra ℚ A]
[Algebra ℚ A']
(f : A →+* A')
:
↑(PowerSeries.map f) (PowerSeries.cos A) = PowerSeries.cos A'
theorem
PowerSeries.exp_mul_exp_eq_exp_add
{A : Type u_1}
[CommRing A]
[Algebra ℚ A]
(a : A)
(b : A)
:
↑(PowerSeries.rescale a) (PowerSeries.exp A) * ↑(PowerSeries.rescale b) (PowerSeries.exp A) = ↑(PowerSeries.rescale (a + b)) (PowerSeries.exp A)
Shows that $e^{aX} * e^{bX} = e^{(a + b)X}$
theorem
PowerSeries.exp_mul_exp_neg_eq_one
{A : Type u_1}
[CommRing A]
[Algebra ℚ A]
:
PowerSeries.exp A * ↑PowerSeries.evalNegHom (PowerSeries.exp A) = 1
Shows that $e^{x} * e^{-x} = 1$
theorem
PowerSeries.exp_pow_eq_rescale_exp
{A : Type u_1}
[CommRing A]
[Algebra ℚ A]
(k : ℕ)
:
PowerSeries.exp A ^ k = ↑(PowerSeries.rescale ↑k) (PowerSeries.exp A)
Shows that $(e^{X})^k = e^{kX}$.
theorem
PowerSeries.exp_pow_sum
{A : Type u_1}
[CommRing A]
[Algebra ℚ A]
(n : ℕ)
:
(Finset.sum (Finset.range n) fun k => PowerSeries.exp A ^ k) = PowerSeries.mk fun p => Finset.sum (Finset.range n) fun k => ↑(k ^ p) * ↑(algebraMap ℚ A) (↑(Nat.factorial p))⁻¹
Shows that $\sum_{k = 0}^{n - 1} (e^{X})^k = \sum_{p = 0}^{\infty} \sum_{k = 0}^{n - 1} \frac{k^p}{p!}X^p$.