Equivalent conditions for DVR #
In DiscreteValuationRing.TFAE
, we show that the following are equivalent for a
noetherian local domain (R, m, k)
:
R
is a discrete valuation ringR
is a valuation ringR
is a dedekind domainR
is integrally closed with a unique prime idealm
is principaldimₖ m/m² = 1
- Every nonzero ideal is a power of
m
.
theorem
exists_maximalIdeal_pow_eq_of_principal
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
[LocalRing R]
[IsDomain R]
(h : ¬IsField R)
(h' : Submodule.IsPrincipal (LocalRing.maximalIdeal R))
(I : Ideal R)
(hI : I ≠ ⊥)
:
∃ n, I = LocalRing.maximalIdeal R ^ n
theorem
maximalIdeal_isPrincipal_of_isDedekindDomain
(R : Type u_1)
[CommRing R]
[LocalRing R]
[IsDomain R]
[IsDedekindDomain R]
:
theorem
DiscreteValuationRing.TFAE
(R : Type u_1)
[CommRing R]
[IsNoetherianRing R]
[LocalRing R]
[IsDomain R]
(h : ¬IsField R)
:
List.TFAE
[DiscreteValuationRing R, ValuationRing R, IsDedekindDomain R, IsIntegrallyClosed R ∧ ∃! P, P ≠ ⊥ ∧ Ideal.IsPrime P,
Submodule.IsPrincipal (LocalRing.maximalIdeal R),
FiniteDimensional.finrank (LocalRing.ResidueField R) (LocalRing.CotangentSpace R) = 1,
∀ (I : Ideal R), I ≠ ⊥ → ∃ n, I = LocalRing.maximalIdeal R ^ n]